Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Thin-film metallization of CuInGaSe2 nanoparticles by supersonic kinetic spraying

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Jung-Jae-
dc.contributor.authorLee, Jong-Gun-
dc.contributor.authorJames, Scott C.-
dc.contributor.authorAl-Deyab, Salem S.-
dc.contributor.authorAhn, Sejin-
dc.contributor.authorYoon, Sam S.-
dc.date.accessioned2021-09-04T17:13:53Z-
dc.date.available2021-09-04T17:13:53Z-
dc.date.created2021-06-18-
dc.date.issued2015-04-15-
dc.identifier.issn0927-0256-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/93838-
dc.description.abstractHigh-speed spraying quickly deposits dry, solid particles at atmospheric pressure, without the use of binders, across large coating areas. We experimentally deposited Al2O3 and copper-indiumgallium-selenium (CIGS) nanoparticles on Al2O3 and molybdenum substrates and numerically replicated the results to elucidate the details of the deposition mechanisms. Thin films formed from layers of sprayed-particle impacts. Both single-and multiple-particle impacts are simulated and increases in pressure, temperature and von Mises stress are reported. Both experimentally and numerically, micron-sized particles are pulverized into flattened layers of nano-sized particle fragments. Characterizing the impact physics (particle collapse speed, energy exchange, and substrate damage) helps identify the optimum operating envelope for particle speeds less than 200 m/s that maximizes thin-film growth rates and minimizes substrate damage. (C) 2015 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER-
dc.subjectAEROSOL DEPOSITION-
dc.subjectROOM-TEMPERATURE-
dc.subjectMECHANISM-
dc.subjectCARBIDE-
dc.subjectPOWDER-
dc.titleThin-film metallization of CuInGaSe2 nanoparticles by supersonic kinetic spraying-
dc.typeArticle-
dc.contributor.affiliatedAuthorYoon, Sam S.-
dc.identifier.doi10.1016/j.commatsci.2015.01.009-
dc.identifier.scopusid2-s2.0-84922518335-
dc.identifier.wosid000350994700009-
dc.identifier.bibliographicCitationCOMPUTATIONAL MATERIALS SCIENCE, v.101, pp.66 - 76-
dc.relation.isPartOfCOMPUTATIONAL MATERIALS SCIENCE-
dc.citation.titleCOMPUTATIONAL MATERIALS SCIENCE-
dc.citation.volume101-
dc.citation.startPage66-
dc.citation.endPage76-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusAEROSOL DEPOSITION-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusCARBIDE-
dc.subject.keywordPlusPOWDER-
dc.subject.keywordAuthorSupersonic spraying-
dc.subject.keywordAuthorCIGS nanoparticle-
dc.subject.keywordAuthorImpact bonding-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Suk Goo photo

Yoon, Suk Goo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE