Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins

Full metadata record
DC Field Value Language
dc.contributor.authorHong, Jae-Sang-
dc.contributor.authorKim, Nam-Hoon-
dc.contributor.authorChoi, Chang-Yong-
dc.contributor.authorLee, Jun-Seong-
dc.contributor.authorNa, Dokyun-
dc.contributor.authorChun, Taehoon-
dc.contributor.authorLee, Young Sik-
dc.date.accessioned2021-09-04T17:16:45Z-
dc.date.available2021-09-04T17:16:45Z-
dc.date.created2021-06-18-
dc.date.issued2015-04-10-
dc.identifier.issn0928-4249-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/93848-
dc.description.abstractPorcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome, which leads to serious economic losses in the pig industry worldwide. While the molecular basis of PCV2 replication and pathogenicity remains elusive, it is increasingly apparent that the microRNA (miRNA) pathway plays a key role in controlling virus-host interactions, in addition to a wide range of cellular processes. Here, we employed Solexa deep sequencing technology to determine which cellular miRNAs were differentially regulated after expression of each of three PCV2-encoded open reading frames (ORFs) in porcine kidney epithelial (PK15) cells. We identified 51 ORF1-regulated miRNAs, 74 ORF2-regulated miRNAs, and 32 ORF3-regulated miRNAs that differed in abundance compared to the control. Gene ontology analysis of the putative targets of these miRNAs identified transcriptional regulation as the most significantly enriched biological process, while KEGG pathway analysis revealed significant enrichment for several pathways including MAPK signaling, which is activated during PCV2 infection. Among the potential target genes of ORF-regulated miRNAs, two genes encoding proteins that are known to interact with PCV2-encoded proteins, zinc finger protein 265 (ZNF265) and regulator of G protein signaling 16 (RGS16), were selected for further analysis. We provide evidence that ZNF265 and RGS16 are direct targets of miR-139-5p and let-7e, respectively, which are both down-regulated by ORF2. Our data will initiate further studies to elucidate the roles of ORF-regulated cellular miRNAs in PCV2-host interactions.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherBMC-
dc.subjectSMALL RNAS-
dc.subjectTARGET-
dc.subjectREPLICATION-
dc.subjectTRANSCRIPTION-
dc.subjectKINASE-
dc.subjectCELLS-
dc.subjectFETAL-
dc.subjectPATHOGENESIS-
dc.subjectINFECTIONS-
dc.subjectBIOGENESIS-
dc.titleChanges in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins-
dc.typeArticle-
dc.contributor.affiliatedAuthorHong, Jae-Sang-
dc.contributor.affiliatedAuthorChun, Taehoon-
dc.contributor.affiliatedAuthorLee, Young Sik-
dc.identifier.doi10.1186/s13567-015-0172-5-
dc.identifier.scopusid2-s2.0-84926667585-
dc.identifier.wosid000353325900001-
dc.identifier.bibliographicCitationVETERINARY RESEARCH, v.46-
dc.relation.isPartOfVETERINARY RESEARCH-
dc.citation.titleVETERINARY RESEARCH-
dc.citation.volume46-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaVeterinary Sciences-
dc.relation.journalWebOfScienceCategoryVeterinary Sciences-
dc.subject.keywordPlusSMALL RNAS-
dc.subject.keywordPlusTARGET-
dc.subject.keywordPlusREPLICATION-
dc.subject.keywordPlusTRANSCRIPTION-
dc.subject.keywordPlusKINASE-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusFETAL-
dc.subject.keywordPlusPATHOGENESIS-
dc.subject.keywordPlusINFECTIONS-
dc.subject.keywordPlusBIOGENESIS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles
College of Life Sciences and Biotechnology > Division of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Young sik photo

Lee, Young sik
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE