Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Stress update algorithm for enhanced homogeneous anisotropic hardening model

Full metadata record
DC Field Value Language
dc.contributor.authorLee, J.-
dc.contributor.authorKim, D.-
dc.contributor.authorLee, Y. -S.-
dc.contributor.authorBong, H. J.-
dc.contributor.authorBarlat, F.-
dc.contributor.authorLee, M. -G.-
dc.date.accessioned2021-09-04T17:29:11Z-
dc.date.available2021-09-04T17:29:11Z-
dc.date.created2021-06-18-
dc.date.issued2015-04-01-
dc.identifier.issn0045-7825-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/93876-
dc.description.abstractA stress integration algorithm is provided for a novel homogeneous-yield-function-based anisotropic hardening (HAH) model. The new model is an extension of the original HAH model that describes cross-hardening or softening of a sheet metal under an orthogonal strain path change. A semi-explicit integration scheme for the stress update is utilized to efficiently handle the gradient of the distorted yield surface during complex strain path changes, as originally proposed by Lee et al. (2012). Validations of the algorithm developed were conducted by comparing the predicted stress-strain curves of dual-phase (DP) 780 and extra-deep-drawing-quality (EDDQ) steels with experimental stress-strain responses observed under cross-loading conditions. Finally, the accuracy of the proposed finite element (FE) formulations was assessed by r-value prediction and preparation of iso-error maps. (C) 2014 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectSTRAIN-PATH CHANGES-
dc.subjectELASTOPLASTIC CONSTITUTIVE RELATIONS-
dc.subjectINCREMENTAL DEFORMATION-THEORY-
dc.subjectSPRING-BACK PREDICTION-
dc.subjectALUMINUM-ALLOY SHEETS-
dc.subjectDUAL-PHASE STEELS-
dc.subjectLOW-CARBON STEEL-
dc.subjectPLANE-STRESS-
dc.subjectINTEGRATION ALGORITHMS-
dc.subjectPOINT ALGORITHMS-
dc.titleStress update algorithm for enhanced homogeneous anisotropic hardening model-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, M. -G.-
dc.identifier.doi10.1016/j.cma.2014.12.016-
dc.identifier.scopusid2-s2.0-84920989571-
dc.identifier.wosid000349857700004-
dc.identifier.bibliographicCitationCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, v.286, pp.63 - 86-
dc.relation.isPartOfCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING-
dc.citation.titleCOMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING-
dc.citation.volume286-
dc.citation.startPage63-
dc.citation.endPage86-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusSTRAIN-PATH CHANGES-
dc.subject.keywordPlusELASTOPLASTIC CONSTITUTIVE RELATIONS-
dc.subject.keywordPlusINCREMENTAL DEFORMATION-THEORY-
dc.subject.keywordPlusSPRING-BACK PREDICTION-
dc.subject.keywordPlusALUMINUM-ALLOY SHEETS-
dc.subject.keywordPlusDUAL-PHASE STEELS-
dc.subject.keywordPlusLOW-CARBON STEEL-
dc.subject.keywordPlusPLANE-STRESS-
dc.subject.keywordPlusINTEGRATION ALGORITHMS-
dc.subject.keywordPlusPOINT ALGORITHMS-
dc.subject.keywordAuthorAnisotropic hardening-
dc.subject.keywordAuthorStress update algorithm-
dc.subject.keywordAuthorCross-loading-
dc.subject.keywordAuthorYield surface-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE