Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Biomineralized Multifunctional Magnetite/Carbon Microspheres for Applications in Li-Ion Batteries and Water Treatment

Authors
Shim, Hyun-WooPark, SangbaekSong, Hee JoKim, Jae-ChanJang, EunjinHong, Kug SunKim, T. DoohunKim, Dong-Wan
Issue Date
16-3월-2015
Publisher
WILEY-V C H VERLAG GMBH
Keywords
electrochemistry; lithium; mesoporous materials; nanostructures; self-assembly; template synthesis
Citation
CHEMISTRY-A EUROPEAN JOURNAL, v.21, no.12, pp.4655 - 4663
Indexed
SCIE
SCOPUS
Journal Title
CHEMISTRY-A EUROPEAN JOURNAL
Volume
21
Number
12
Start Page
4655
End Page
4663
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/94117
DOI
10.1002/chem.201406267
ISSN
0947-6539
Abstract
Advanced functional materials incorporating well-defined multiscale architectures are a key focus for multiple nanotechnological applications. However, strategies for developing such materials, including nanostructuring, nano-/microcombination, hybridization, and so on, are still being developed. Here, we report a facile, scalable biomineralization process in which Micrococcus lylae bacteria are used as soft templates to synthesize 3D hierarchically structured magnetite (Fe3O4) microspheres for use as Li-ion battery anode materials and in water treatment applications. Self-assembled Fe3O4 microspheres with flower-like morphologies are systematically fabricated from biomineralized 2D FeO(OH) nanoflakes at room temperature and are subsequently subjected to post-annealing at 400 degrees C. In particular, because of their mesoporous properties with a hollow interior and the improved electrical conductivity resulting from the carbonized bacterial templates, the Fe3O4 microspheres obtained by calcining the FeO(OH) in Ar exhibit enhanced cycle stability and rate capability as Li-ion battery anodes, as well as superior adsorption of organic pollutants and toxic heavy metals.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE