Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Novel self-assembly-induced 3D plotting for macro/nano-porous collagen scaffolds comprised of nanofibrous collagen filaments

Full metadata record
DC Field Value Language
dc.contributor.authorShin, Kwan-Ha-
dc.contributor.authorKim, Jong-Woo-
dc.contributor.authorKoh, Young-Hag-
dc.contributor.authorKim, Hyoun-Ee-
dc.date.accessioned2021-09-04T18:12:44Z-
dc.date.available2021-09-04T18:12:44Z-
dc.date.created2021-06-15-
dc.date.issued2015-03-15-
dc.identifier.issn0167-577X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/94126-
dc.description.abstractThis study proposes self-assembly-induced 3D plotting as an innovative solid freeform fabrication (SFF) technique for the production of macro/nano-porous collagen scaffolds, particularly comprised of nanofibrous collagen filaments. In this technique, collagen filaments deposited in a coagulation bath could be effectively gelled through the self-assembly of collagen molecules into fibrils, accordingly, enabling the 3-dimensional deposition of collagen filaments with a collagen nanofiber network. The unique macro/ nano-structure could be structurally stabilized by dehydration process coupled with chemical cross-linking. The porous collagen scaffolds produced had 3-dimensionally interconnected macropores (similar to 451 x 305 mu m in pore width) separated by nanoprous collagen filaments. In addition, the macro/nano-porous collagen scaffolds showed the tensile strength of similar to 353 kPa and compressive strength of similar to 31 kPa at a porosity of similar to 95 vol% and excellent in vitro biocompatibility, assessed using pre-osteoblast MC3T3-E1 cells. (C) 2014 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectBIOMATERIALS-
dc.subjectFIBRILLOGENESIS-
dc.subjectBONE-
dc.titleNovel self-assembly-induced 3D plotting for macro/nano-porous collagen scaffolds comprised of nanofibrous collagen filaments-
dc.typeArticle-
dc.contributor.affiliatedAuthorKoh, Young-Hag-
dc.identifier.doi10.1016/j.matlet.2014.12.119-
dc.identifier.scopusid2-s2.0-84921326231-
dc.identifier.wosid000350520200071-
dc.identifier.bibliographicCitationMATERIALS LETTERS, v.143, pp.265 - 268-
dc.relation.isPartOfMATERIALS LETTERS-
dc.citation.titleMATERIALS LETTERS-
dc.citation.volume143-
dc.citation.startPage265-
dc.citation.endPage268-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusBIOMATERIALS-
dc.subject.keywordPlusFIBRILLOGENESIS-
dc.subject.keywordPlusBONE-
dc.subject.keywordAuthorBiomaterials-
dc.subject.keywordAuthorBiomimetic-
dc.subject.keywordAuthorMicrostructure-
dc.subject.keywordAuthorPorous materials-
dc.subject.keywordAuthorPolymers-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Bioengineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Koh, Young Hag photo

Koh, Young Hag
바이오의공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE