Fabrication of rigid stamp on a cylindrical substrate using hydrogen silsesquioxane/ZrO2 nanoparticle composite material for roll-to-roll nanoimprinting process
- Authors
- Ryu, Sang-Woo; Choi, Hak-Jong; Choo, Soyoung; Kim, Chae-Hyun; Lee, Heon
- Issue Date
- 3월-2015
- Publisher
- SPRINGER
- Keywords
- Direct printing; Hydrogen silsesquioxane; Zirconia nanoparticle; Roll to roll process
- Citation
- JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, v.73, no.3, pp.628 - 633
- Indexed
- SCIE
SCOPUS
- Journal Title
- JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY
- Volume
- 73
- Number
- 3
- Start Page
- 628
- End Page
- 633
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/94330
- DOI
- 10.1007/s10971-014-3571-6
- ISSN
- 0928-0707
- Abstract
- In this study, a hydrogen silsesquioxane (HSQ) and zirconium oxide (ZrO2, zirconia) nanoparticle composite was used for a nanopatterned roll stamp fabricated using the direct printing technique. HSQ, referred as a spin on glass (SOG) material have been used for direct printing process with polydimethylsiloxane mold. In order to enhance mechanical properties of SOG material without losing printable property, ZrO2 nanoparticles were dispersed with HSQ solution. After direct printing process of composite material, annealing process was done to convert polymeric HSQ structure into SiO2 in order to enhance mechanical properties. We evaluate the chemical, optical and mechanical properties of the HSQ/ZrO2 composite by FT-IR, a refractive index measurement, a nanoindentation test and a pencil adhesion test. At the mechanical property tests, the composite material shows a high hardness value and good adhesion properties with glass substrate. Considering the composite material properties, it is suitable for use as a master cylindrical stamp in a roll-to-roll process.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.