Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-Performance (Na0.5K0.5)NbO3 Thin Film Piezoelectric Energy Harvester

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Bo-Yun-
dc.contributor.authorSeo, In-Tae-
dc.contributor.authorLee, Youn-Seon-
dc.contributor.authorKim, Jin-Seong-
dc.contributor.authorNahm, Sahn-
dc.contributor.authorKang, Chong-Yun-
dc.contributor.authorYoon, Seok-Jin-
dc.contributor.authorPaik, Jong-Hoo-
dc.contributor.authorJeong, Young-Hun-
dc.date.accessioned2021-09-04T20:33:08Z-
dc.date.available2021-09-04T20:33:08Z-
dc.date.created2021-06-15-
dc.date.issued2015-01-
dc.identifier.issn0002-7820-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/94808-
dc.description.abstractThe pseudocubic structure of a (Na0.5K0.5)NbO3 (NKN) film grown on a Pt/Ti/SiO2/Si substrate changed to an orthorhombic structure when the film was transferred onto a polyimide substrate. Piezoelectric constant for the transferred NKN film increased considerably from 74 +/- 11 to 120 +/- 18pm/V because the crystal structure of the film had changed from pseudocubic to orthorhombic. A gold interdigitated electrode was deposited onto the transferred NKN film to synthesize a NKN piezoelectric energy harvester. The NKN piezoelectric energy harvester was poled before bending under a 100kV/cm DC electric field across the electrodes. When a strain of 0.85% and a strain rate of 4.05%/s were applied to the NKN piezoelectric energy harvester, it produced a maximum output voltage of 1.9V and a current of 38nA, corresponding to a power density of 2.89W/cm(3).-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-
dc.subjectPOTASSIUM-SODIUM NIOBATE-
dc.subjectELECTRICAL-PROPERTIES-
dc.subjectLOW-TEMPERATURE-
dc.subjectNANOGENERATOR-
dc.subjectCERAMICS-
dc.subjectGROWTH-
dc.titleHigh-Performance (Na0.5K0.5)NbO3 Thin Film Piezoelectric Energy Harvester-
dc.typeArticle-
dc.contributor.affiliatedAuthorNahm, Sahn-
dc.contributor.affiliatedAuthorKang, Chong-Yun-
dc.identifier.doi10.1111/jace.13238-
dc.identifier.scopusid2-s2.0-84920119589-
dc.identifier.wosid000347302000018-
dc.identifier.bibliographicCitationJOURNAL OF THE AMERICAN CERAMIC SOCIETY, v.98, no.1, pp.119 - 124-
dc.relation.isPartOfJOURNAL OF THE AMERICAN CERAMIC SOCIETY-
dc.citation.titleJOURNAL OF THE AMERICAN CERAMIC SOCIETY-
dc.citation.volume98-
dc.citation.number1-
dc.citation.startPage119-
dc.citation.endPage124-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Ceramics-
dc.subject.keywordPlusPOTASSIUM-SODIUM NIOBATE-
dc.subject.keywordPlusELECTRICAL-PROPERTIES-
dc.subject.keywordPlusLOW-TEMPERATURE-
dc.subject.keywordPlusNANOGENERATOR-
dc.subject.keywordPlusCERAMICS-
dc.subject.keywordPlusGROWTH-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE