Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Geometrical implication of ion transporters employing an ellipsoidal hollow structure in pseudo-solid electrolytes

Authors
Kim, YoungjinPark, Jong HyukJung, JihoonLee, Sang-Soo
Issue Date
2015
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.7, no.6, pp.2729 - 2734
Indexed
SCIE
SCOPUS
Journal Title
NANOSCALE
Volume
7
Number
6
Start Page
2729
End Page
2734
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/96289
DOI
10.1039/c4nr05965d
ISSN
2040-3364
Abstract
We demonstrate facilitated ion transport in oligomer electrolytes by introducing TiO2 hollow particles of ellipsoidal and spherical shapes. It was found that the TiO2 hollow particles of ellipsoidal shape are much more effective in constructing ionic diffusion paths for the Grotthuss mechanism, resulting in highly enhanced diffusion coefficients of ions such as I- and I-3(-) in oligomer electrolytes. Compared to the hollow spheres of the TiO2 component, the ellipsoidal hollow particles of the TiO2 component provide 11% larger ionic diffusion coefficients, because of their geometry with a relatively small diffusion resistance. Since the facilitated ion transport can render fast redox reactions at both photo and counter electrodes, the solid state dye-sensitized solar cells employing oligomer electrolytes based on the TiO2 hollow ellipsoids exhibit highly improved photovoltaic performances including highly improved energy-conversion efficiency without destabilizing the cell.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE