Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Importance of Ligand Effect in Selective Hydrogen Formation via Formic Acid Decomposition on the Bimetallic Pd/Ag Catalyst from First-Principles

Authors
Cho, JinwonLee, SangheonHan, JongheeYoon, Sung PilNam, Suk WooChoi, Sun HeeLee, Kwan-YoungHam, Hyung Chul
Issue Date
2-10월-2014
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF PHYSICAL CHEMISTRY C, v.118, no.39, pp.22553 - 22560
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF PHYSICAL CHEMISTRY C
Volume
118
Number
39
Start Page
22553
End Page
22560
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/97124
DOI
10.1021/jp5050817
ISSN
1932-7447
Abstract
The critical role of the AgPd ligand effect (which is tuned by changing the number of Pd atomic layers) in determining the dehydrogenation and dehydration of HCOOH on the bimetallic Pd/Ag catalysts was elucidated by using the spin-polarized density functional theory (DFT) calculations. Our calculations suggest that the selectivity to H-2 production from HCOOH on the bimetallic Pd/Ag catalysts strongly depends on the Pd atomic layer thickness at near surface. In particular, the thinnest Pd monolayer in the Pd/Ag system is responsible for enhancing the selectivity of HCOOH decomposition toward H2 production by reducing the surface binding strength of specific intermediates such as HCOO and HCO. The dominant AgPd ligand effect by the substantial charge donation to the Pd surface from the subsurface Ag [which significantly reduce the density of state (particularly, d(z2-r2) orbital) near the Fermi level] proves to be a key factor for the selective hydrogen production from HCOOH decomposition, whereas the expansive (tensile) strain imposed by the underlying Ag substrate plays a minor role. This work hints on the importance of properly engineering the surface activity of the AgPd coreshell catalysts by the interplay between ligand and strain effects.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > GREEN SCHOOL (Graduate School of Energy and Environment) > 1. Journal Articles
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwan Young photo

Lee, Kwan Young
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE