Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Supersonically Blown Ultrathin Thorny Devil Nanofibers for Efficient Air Cooling

Full metadata record
DC Field Value Language
dc.contributor.authorAn, Seongpil-
dc.contributor.authorLee, Changmin-
dc.contributor.authorLiou, Minho-
dc.contributor.authorJo, Hong Seok-
dc.contributor.authorPark, Jung-Jae-
dc.contributor.authorYarin, Alexander L.-
dc.contributor.authorYoon, Sam S.-
dc.date.accessioned2021-09-05T06:03:57Z-
dc.date.available2021-09-05T06:03:57Z-
dc.date.created2021-06-15-
dc.date.issued2014-08-27-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/97653-
dc.description.abstractThe effect of the supersonically blown below-74 nm nanofibers on cooling of high-temperature surfaces is studied experimentally and theoretically. The ultrathin supersonically blown nanofibers were deposited and then copper-plated, while their surfaces resembled those of the thorny-devil nanofibers. Here, we study for the first time the enhancement of surface cooling in gas in the cases of the forced and natural convection with the help of ultrathin thorny-devil nanofibers. These polymer core metal shell nanofibers in nanometric scale possess a relatively high thickness of the metal shell and a high effective thermal conductivity, which facilitates heat transfer. The additional surface temperature reduction close to 5 degrees C in the case of the forced convection in the impinging air jet and close to 17 degrees C in the case of the natural convection was achieved. Correspondingly, an increase in the value of the heat transfer coefficient of about 41% in the forced convection, and about 20% in the natural convection was achieved due to the presence of the thorny devil electrospun and/or supersonically blown nanofibers.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectDROP IMPACT-
dc.subjectPOLYMER-SOLUTIONS-
dc.subjectJET IMPINGEMENT-
dc.subjectHEAT-TRANSFER-
dc.subjectLIQUID JETS-
dc.subjectENHANCEMENT-
dc.titleSupersonically Blown Ultrathin Thorny Devil Nanofibers for Efficient Air Cooling-
dc.typeArticle-
dc.contributor.affiliatedAuthorYoon, Sam S.-
dc.identifier.doi10.1021/am503139n-
dc.identifier.scopusid2-s2.0-84906815213-
dc.identifier.wosid000341122000044-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.6, no.16, pp.13657 - 13666-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume6-
dc.citation.number16-
dc.citation.startPage13657-
dc.citation.endPage13666-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusDROP IMPACT-
dc.subject.keywordPlusPOLYMER-SOLUTIONS-
dc.subject.keywordPlusJET IMPINGEMENT-
dc.subject.keywordPlusHEAT-TRANSFER-
dc.subject.keywordPlusLIQUID JETS-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordAuthorelectrospinning-
dc.subject.keywordAuthornanofibers-
dc.subject.keywordAuthorelectroplating-
dc.subject.keywordAuthorsupersonic nanoblowing-
dc.subject.keywordAuthorheat removal-
dc.subject.keywordAuthorcooling microelectronics-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Suk Goo photo

Yoon, Suk Goo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE