Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Oxidative stress response in Pseudomonas putida

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jisun-
dc.contributor.authorPark, Woojun-
dc.date.accessioned2021-09-05T06:29:48Z-
dc.date.available2021-09-05T06:29:48Z-
dc.date.created2021-06-15-
dc.date.issued2014-08-
dc.identifier.issn0175-7598-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/97836-
dc.description.abstractPseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER-
dc.subjectALKYL HYDROPEROXIDE REDUCTASE-
dc.subjectTRANSCRIPTIONAL REGULATOR OXYR-
dc.subjectSIGNAL-TRANSDUCTION PROTEINS-
dc.subjectENTNER-DOUDOROFF PATHWAY-
dc.subjectESCHERICHIA-COLI-
dc.subjectHYDROGEN-PEROXIDE-
dc.subjectSUPEROXIDE-DISMUTASE-
dc.subjectMUTATIONAL ANALYSIS-
dc.subjectDNA-DAMAGE-
dc.subjectSALMONELLA-TYPHIMURIUM-
dc.titleOxidative stress response in Pseudomonas putida-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Woojun-
dc.identifier.doi10.1007/s00253-014-5883-4-
dc.identifier.wosid000340087600003-
dc.identifier.bibliographicCitationAPPLIED MICROBIOLOGY AND BIOTECHNOLOGY, v.98, no.16, pp.6933 - 6946-
dc.relation.isPartOfAPPLIED MICROBIOLOGY AND BIOTECHNOLOGY-
dc.citation.titleAPPLIED MICROBIOLOGY AND BIOTECHNOLOGY-
dc.citation.volume98-
dc.citation.number16-
dc.citation.startPage6933-
dc.citation.endPage6946-
dc.type.rimsART-
dc.type.docTypeReview-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.subject.keywordPlusALKYL HYDROPEROXIDE REDUCTASE-
dc.subject.keywordPlusTRANSCRIPTIONAL REGULATOR OXYR-
dc.subject.keywordPlusSIGNAL-TRANSDUCTION PROTEINS-
dc.subject.keywordPlusENTNER-DOUDOROFF PATHWAY-
dc.subject.keywordPlusESCHERICHIA-COLI-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusSUPEROXIDE-DISMUTASE-
dc.subject.keywordPlusMUTATIONAL ANALYSIS-
dc.subject.keywordPlusDNA-DAMAGE-
dc.subject.keywordPlusSALMONELLA-TYPHIMURIUM-
dc.subject.keywordAuthorOxidative stress-
dc.subject.keywordAuthorPseudomonas putida-
dc.subject.keywordAuthorTranscriptional regulation-
dc.subject.keywordAuthorIron homeostasis-
dc.subject.keywordAuthorAntibiotics-
dc.subject.keywordAuthorRedox sensing-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Woo jun photo

Park, Woo jun
생명과학대학 (환경생태공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE