Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of Red Clay on Diesel Bioremediation and Soil Bacterial Community

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Jaejoon-
dc.contributor.authorChoi, Sungjong-
dc.contributor.authorHong, Hyerim-
dc.contributor.authorSung, Jung-Suk-
dc.contributor.authorPark, Woojun-
dc.date.accessioned2021-09-05T06:30:44Z-
dc.date.available2021-09-05T06:30:44Z-
dc.date.created2021-06-15-
dc.date.issued2014-08-
dc.identifier.issn0095-3628-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/97843-
dc.description.abstractRed clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER-
dc.subject16S RIBOSOMAL-RNA-
dc.subjectREAL-TIME PCR-
dc.subjectMICROBIAL COMMUNITY-
dc.subjectOIL-SPILL-
dc.subjectMARINE-
dc.subjectBIODEGRADATION-
dc.subjectSEQUENCE-
dc.subjectDATABASE-
dc.titleEffect of Red Clay on Diesel Bioremediation and Soil Bacterial Community-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Woojun-
dc.identifier.doi10.1007/s00248-014-0420-7-
dc.identifier.scopusid2-s2.0-84904550694-
dc.identifier.wosid000339735300013-
dc.identifier.bibliographicCitationMICROBIAL ECOLOGY, v.68, no.2, pp.314 - 323-
dc.relation.isPartOfMICROBIAL ECOLOGY-
dc.citation.titleMICROBIAL ECOLOGY-
dc.citation.volume68-
dc.citation.number2-
dc.citation.startPage314-
dc.citation.endPage323-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaMarine & Freshwater Biology-
dc.relation.journalResearchAreaMicrobiology-
dc.relation.journalWebOfScienceCategoryEcology-
dc.relation.journalWebOfScienceCategoryMarine & Freshwater Biology-
dc.relation.journalWebOfScienceCategoryMicrobiology-
dc.subject.keywordPlus16S RIBOSOMAL-RNA-
dc.subject.keywordPlusREAL-TIME PCR-
dc.subject.keywordPlusMICROBIAL COMMUNITY-
dc.subject.keywordPlusOIL-SPILL-
dc.subject.keywordPlusMARINE-
dc.subject.keywordPlusBIODEGRADATION-
dc.subject.keywordPlusSEQUENCE-
dc.subject.keywordPlusDATABASE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Woo jun photo

Park, Woo jun
생명과학대학 (환경생태공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE