Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

One-stop microfiber spinning and fabrication of a fibrous cell-encapsulated scaffold on a single microfluidic platform

Full metadata record
DC Field Value Language
dc.contributor.authorPark, D. Y.-
dc.contributor.authorMun, C. H.-
dc.contributor.authorKang, E.-
dc.contributor.authorNo, D. Y.-
dc.contributor.authorJu, J.-
dc.contributor.authorLee, S. H.-
dc.date.accessioned2021-09-05T08:20:54Z-
dc.date.available2021-09-05T08:20:54Z-
dc.date.created2021-06-15-
dc.date.issued2014-06-
dc.identifier.issn1758-5082-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/98352-
dc.description.abstractThis paper provides a method for microscale fiber spinning and the in situ construction of a 3D fibrous scaffold on a single microfluidic platform. This platform was also used to fabricate a variety of fibrous scaffolds with diverse compositions without the use of complicated devices. We explored the potential utility of the fibrous scaffolds for tissue engineering applications by constructing a fibrous scaffold encapsulating primary hepatocytes. The cells in scaffold were cultured over seven days and maintained higher viability comparing with 3D alginate non-fibrous block. The main advantage of this platform is that the fibrous structure used to form a scaffold can be generated without damaging the mechanically weak alginate fibers or encapsulated cells because all procedures are performed in a single platform without the intervention of the operator. In addition, the proposed fibrous scaffold permitted high diffusion capability of molecules, which enabled better viability of encapsulated cells than non-fibrous scaffold even in massive cell culture.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIOP PUBLISHING LTD-
dc.subjectTISSUE-
dc.subjectHYDROGELS-
dc.subjectMODEL-
dc.subjectBONE-
dc.subjectCARTILAGE-
dc.titleOne-stop microfiber spinning and fabrication of a fibrous cell-encapsulated scaffold on a single microfluidic platform-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, S. H.-
dc.identifier.doi10.1088/1758-5082/6/2/024108-
dc.identifier.scopusid2-s2.0-84899504606-
dc.identifier.wosid000337705000010-
dc.identifier.bibliographicCitationBIOFABRICATION, v.6, no.2-
dc.relation.isPartOfBIOFABRICATION-
dc.citation.titleBIOFABRICATION-
dc.citation.volume6-
dc.citation.number2-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Biomaterials-
dc.subject.keywordPlusTISSUE-
dc.subject.keywordPlusHYDROGELS-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusBONE-
dc.subject.keywordPlusCARTILAGE-
dc.subject.keywordAuthormicrofluidic-
dc.subject.keywordAuthor3D alginate fibrous scaffold-
dc.subject.keywordAuthorcell-laden fibers-
dc.subject.keywordAuthorporosity-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Health Sciences > School of Biomedical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE