Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Formulas for cube roots in F-3(m) using shifted polynomial basis

Full metadata record
DC Field Value Language
dc.contributor.authorCho, Young In-
dc.contributor.authorChang, Nam Su-
dc.contributor.authorHong, Seokhie-
dc.date.accessioned2021-09-05T08:36:49Z-
dc.date.available2021-09-05T08:36:49Z-
dc.date.created2021-06-15-
dc.date.issued2014-06-
dc.identifier.issn0020-0190-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/98461-
dc.description.abstractEvaluation of cube roots in characteristic three finite fields is required for Tate (or modified Tate) pairing computation. The Hamming weight of x(1/3) means that the number of nonzero coefficients in the polynomial representation of x(1/3) in F-3(m) = F-3[x]/(f), where f is an element of F-3[x] is an irreducible polynomial. The Hamming weight of x(1/3) determines the efficiency of cube roots computation for characteristic three finite fields. Ahmadi et al. found the Hamming weight of x(1/3) using polynomial basis [4]. In this paper, we observe that shifted polynomial basis (SPB), a variation of polynomial basis, can reduce Hamming weights of x(1/3) and x(2/3). Moreover, we provide the suitable SPB that eliminates modular reduction process in cube roots computation. (c) 2014 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectALGORITHMS-
dc.titleFormulas for cube roots in F-3(m) using shifted polynomial basis-
dc.typeArticle-
dc.contributor.affiliatedAuthorHong, Seokhie-
dc.identifier.doi10.1016/j.ipl.2014.01.001-
dc.identifier.scopusid2-s2.0-84894262735-
dc.identifier.wosid000334485800009-
dc.identifier.bibliographicCitationINFORMATION PROCESSING LETTERS, v.114, no.6, pp.331 - 337-
dc.relation.isPartOfINFORMATION PROCESSING LETTERS-
dc.citation.titleINFORMATION PROCESSING LETTERS-
dc.citation.volume114-
dc.citation.number6-
dc.citation.startPage331-
dc.citation.endPage337-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.subject.keywordPlusALGORITHMS-
dc.subject.keywordAuthorCryptography-
dc.subject.keywordAuthorShifted polynomial basis-
dc.subject.keywordAuthorCube roots-
dc.subject.keywordAuthorFinite field arithmetic-
Files in This Item
There are no files associated with this item.
Appears in
Collections
School of Cyber Security > Department of Information Security > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Seok hie photo

Hong, Seok hie
정보보호학과
Read more

Altmetrics

Total Views & Downloads

BROWSE