Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nuclear magnetic relaxation in the quasi-two-dimensional (C2H5NH3)(2)Cd1-xMnxCl4 mixed crystal systems

Full metadata record
DC Field Value Language
dc.contributor.authorKim, J. T.-
dc.contributor.authorPark, J. K.-
dc.contributor.authorLee, C. H.-
dc.contributor.authorLee, K. W.-
dc.contributor.authorChoi, E. H.-
dc.contributor.authorLee, Cheol Eui-
dc.date.accessioned2021-09-05T11:14:10Z-
dc.date.available2021-09-05T11:14:10Z-
dc.date.created2021-06-15-
dc.date.issued2014-03-
dc.identifier.issn0038-1098-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/99230-
dc.description.abstractWe have studied the quasi-two-dimensional layered compound systems (C2H5NH3)(2)Cd1-xMnxCL4 (0 <= x <= 1) by means of H-1 nuclear magnetic resonance (NMR) measurements. In contrast to the case of the unmixed crystal compounds (x=0, 1) following a single-exponential type of the NMR spin-lattice relaxation, a stretched-exponential type of recovery, M(t) = M-0[1 - exp( - t/T-1S)(n)], was necessary for the stoichiometric composition systems in addition to it, the exponent n depending on the randomly distributed paramagnetic Mn impurity concentration x. The spin-lattice relaxation rate T-1s(-1) thus obtained showed a maximum at a percolation threshold x(c) approximate to 0.3, in agreement with a percolation theory of the paramagnetic impurity relaxation. The stacking dimensions of the paramagnetic ions were derived from the exponent n as a function of x. (C) 2013 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectSPIN-LATTICE-RELAXATION-
dc.subjectPEROVSKITE COMPOUND-
dc.subject(C2H5NH3)(2)CDCL4CU2+-
dc.subjectTEMPERATURE-
dc.subjectDEPENDENCE-
dc.subjectTRANSITION-
dc.subjectPRESSURE-
dc.titleNuclear magnetic relaxation in the quasi-two-dimensional (C2H5NH3)(2)Cd1-xMnxCl4 mixed crystal systems-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Cheol Eui-
dc.identifier.doi10.1016/j.ssc.2013.12.014-
dc.identifier.scopusid2-s2.0-84891847449-
dc.identifier.wosid000331635900012-
dc.identifier.bibliographicCitationSOLID STATE COMMUNICATIONS, v.182, pp.47 - 49-
dc.relation.isPartOfSOLID STATE COMMUNICATIONS-
dc.citation.titleSOLID STATE COMMUNICATIONS-
dc.citation.volume182-
dc.citation.startPage47-
dc.citation.endPage49-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusSPIN-LATTICE-RELAXATION-
dc.subject.keywordPlusPEROVSKITE COMPOUND-
dc.subject.keywordPlus(C2H5NH3)(2)CDCL4CU2+-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordAuthorPerovskite-type layered compounds-
dc.subject.keywordAuthorPercolation theory of paramagnetic impurity relaxation-
dc.subject.keywordAuthorNuclear magnetic resonance-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE