A spatially filtered multilevel model to account for spatial dependency: application to self-rated health status in South Korea
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, Yoo Min | - |
dc.contributor.author | Kim, Youngho | - |
dc.date.accessioned | 2021-09-05T11:18:01Z | - |
dc.date.available | 2021-09-05T11:18:01Z | - |
dc.date.created | 2021-06-15 | - |
dc.date.issued | 2014-02-27 | - |
dc.identifier.issn | 1476-072X | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/99258 | - |
dc.description.abstract | Background: This study aims to suggest an approach that integrates multilevel models and eigenvector spatial filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes. However, the results of conventional multilevel models are potentially misleading when spatial dependency across neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets. Methods: In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs. Results: The findings show that sex, employment status, monthly household income, and perceived levels of stress are significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased estimations and improves the explanatory power of the model compared to conventional multilevel models although there are no changes in the signs of parameters and the significance levels between the two models in this case study. Conclusions: The integrated approach proposed in this paper is a useful tool for understanding the geographical distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is anticipated that this integrated method will also out-perform conventional models when it is used in other contexts. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | BMC | - |
dc.subject | REGRESSION-MODELS | - |
dc.subject | RISK-FACTORS | - |
dc.subject | MORTALITY | - |
dc.subject | DEPRIVATION | - |
dc.subject | COMMUNITY | - |
dc.subject | BIRTH | - |
dc.subject | AUTOCORRELATION | - |
dc.subject | DYNAMICS | - |
dc.subject | DISEASE | - |
dc.subject | CONTEXT | - |
dc.title | A spatially filtered multilevel model to account for spatial dependency: application to self-rated health status in South Korea | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Kim, Youngho | - |
dc.identifier.doi | 10.1186/1476-072X-13-6 | - |
dc.identifier.scopusid | 2-s2.0-84896738597 | - |
dc.identifier.wosid | 000333559600001 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, v.13 | - |
dc.relation.isPartOf | INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS | - |
dc.citation.title | INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS | - |
dc.citation.volume | 13 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | ssci | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Public, Environmental & Occupational Health | - |
dc.relation.journalWebOfScienceCategory | Public, Environmental & Occupational Health | - |
dc.subject.keywordPlus | REGRESSION-MODELS | - |
dc.subject.keywordPlus | RISK-FACTORS | - |
dc.subject.keywordPlus | MORTALITY | - |
dc.subject.keywordPlus | DEPRIVATION | - |
dc.subject.keywordPlus | COMMUNITY | - |
dc.subject.keywordPlus | BIRTH | - |
dc.subject.keywordPlus | AUTOCORRELATION | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordPlus | DISEASE | - |
dc.subject.keywordPlus | CONTEXT | - |
dc.subject.keywordAuthor | Self-rated health status | - |
dc.subject.keywordAuthor | Multilevel model | - |
dc.subject.keywordAuthor | Eigenvector spatial filtering | - |
dc.subject.keywordAuthor | Spatial dependency | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.