Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Biomechanical analysis of operative methods in the treatment of extra-articular fracture of the proximal Tibia

Authors
Lee, S.-M.Oh, C.-W.Oh, J.-K.Kim, J.-W.Lee, H.-J.Chon, C.-S.Lee, B.-J.Kyung, H.-S.
Issue Date
2014
Publisher
Korean Orthopaedic Association
Keywords
Biomechanical study; Locking plate; Nail; Proximal tibial fracture
Citation
CiOS Clinics in Orthopedic Surgery, v.6, no.3, pp.312 - 317
Indexed
SCOPUS
KCI
Journal Title
CiOS Clinics in Orthopedic Surgery
Volume
6
Number
3
Start Page
312
End Page
317
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/100767
DOI
10.4055/cios.2014.6.3.312
ISSN
2005-291x
Abstract
Background: To determine relative fixation strengths of a single lateral locking plate, a double construct of a locking plate, and a tibial nail used in treatment of proximal tibial extra-articular fractures. Methods: Three groups of composite tibial synthetic bones consisting of 5 specimens per group were included: lateral plating (LP) using a locking compression plate-proximal lateral tibia (LCP-PLT), double plating (DP) using a LCP-PLT and a locking compression plate-medial proximal tibia, and intramedullary nailing (IN) using an expert tibial nail. To simulate a comminuted fracture model, a gap osteotomy measuring 1 cm was created 8 cm below the knee joint. For each tibia, a minimal preload of 100 N was applied before loading to failure. A vertical load was applied at 25 mm/min until tibial failure. Results: Under axial loading, fixation strength of DP (14,387.3 N; standard deviation [SD], 1,852.1) was 17.5% greater than that of LP (12,249.3 N; SD, 1,371.6), and 60% less than that of IN (22,879.6 N; SD, 1,578.8;/? < 0.001, Kruskal-Wallis test). For ultimate displacement under axial loading, similar results were observed for LP (5.74 mm; SD, 1.01) and DP (4.45 mm; SD, 0.96), with a larger displacement for IN (5.84 mm; SD, 0.99). The median stiffness values were 2,308.7 N/mm (range, 2,147.5 to 2,521.4 N/mm; SD, 165.42) for the LP group, 4,128.2 N/mm (range, 3,028.1 to 4,831.0 N/mm; SD, 832.88) for the DP group, and 5,517.5 N/mm (range, 3,933.1 to 7,078.2 N/mm; SD, 1,296.19) for the IN group. Conclusions: During biomechanical testing of a simulated comminuted proximal tibial fracture model, the DP proved to be stronger than the LP in terms of ultimate strength. IN proved to be the strongest; however, for minimally invasive osteosynthesis, which may be technically difficult to perform using a nail, the performance of the DP construct may lend credence to the additional use of a medial locking plate. © 2014, by The Korean Orthopaedic Association. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Oh, Jong Keon photo

Oh, Jong Keon
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE