Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hematite (alpha-Fe2O3) nanoparticles on vulcan carbon as an ultrahigh capacity anode material in lithium ion battery

Authors
Chaudhari, Nitin K.Kim, Min-SikBae, Tae-SungYu, Jong-Sung
Issue Date
30-12월-2013
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Hematite nanoparticles; Carbon support; Glycine; Lithium ion battery; Anode material
Citation
ELECTROCHIMICA ACTA, v.114, pp.60 - 67
Indexed
SCIE
SCOPUS
Journal Title
ELECTROCHIMICA ACTA
Volume
114
Start Page
60
End Page
67
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/101261
DOI
10.1016/j.electacta.2013.09.169
ISSN
0013-4686
Abstract
We present a first time report on novel and easy low temperature hydrothermal method using glycine to synthesize alpha-Fe2O3 nanoparticles (NPs) and Vulcan carbon (VC)-supported alpha-Fe2O3 composite. Formation of complex between glycine and iron metal ions retards iron oxide nucleation process at early stage of reaction, resulting in uniform dispersion of the iron oxide with smaller particle size. The small alpha-Fe2O3 NPs are highly dispersed on the VC to form an iron oxide-carbon composite, which exhibits a high specific capacity of 1200 mAh g(-1) as an anode material for lithium battery, significantly improving anode performance. The excellent performance observed with the alpha-Fe2O3/VC composite is ascribed to well-dispersed small iron oxide particles regulated by the novel glycine-assisted approach and the presence of a carbon support. In particular, remarkably, the activity of the alpha-Fe2O3/VC composite is much higher than combined sum of respective values of the bare alpha-Fe2O3 NPs and supporting VC, indicating strong favorable synergistic interaction between alpha-Fe2O3 and VC in the composite. Our studies demonstrate that the carbon support plays remarkably important roles as a conductive buffer and as active sites for lithium storage in significantly improving Li ion storage capacity, cycle life and rate capability of the anode electrode. (C) 2013 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Material Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE