Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Current-induced torques and interfacial spin-orbit coupling

Authors
Haney, Paul M.Lee, Hyun-WooLee, Kyung-JinManchon, AurelienStiles, M. D.
Issue Date
19-Dec-2013
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW B, v.88, no.21
Indexed
SCIE
SCOPUS
Journal Title
PHYSICAL REVIEW B
Volume
88
Number
21
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/101275
DOI
10.1103/PhysRevB.88.214417
ISSN
2469-9950
Abstract
In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the "fieldlike" torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE