Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect

Authors
Jiang, JWQi, ZNPark, HSRabczuk, T
Issue Date
1-11월-2013
Publisher
IOP PUBLISHING LTD
Citation
NANOTECHNOLOGY, v.24, no.43
Indexed
SCIE
SCOPUS
Journal Title
NANOTECHNOLOGY
Volume
24
Number
43
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/101632
DOI
10.1088/0957-4484/24/43/435705
ISSN
0957-4484
Abstract
We derive, from an empirical interaction potential, an analytic formula for the elastic bending modulus of single-layer MoS2 (SLMoS2). By using this approach, we do not need to define or estimate a thickness value for SLMoS2, which is important due to the substantial controversy in defining this value for two-dimensional or ultrathin nanostructures such as graphene and nanotubes. The obtained elastic bending modulus of 9.61 eV in SLMoS2 is significantly higher than the bending modulus of 1.4 eV in graphene, and is found to be within the range of values that are obtained using thin shell theory with experimentally obtained values for the elastic constants of SLMoS2. This increase in bending modulus as compared to monolayer graphene is attributed, through our analytic expression, to the finite thickness of SLMoS2. Specifically, while each monolayer of S atoms contributes 1.75 eV to the bending modulus, which is similar to the 1.4 eV bending modulus of monolayer graphene, the additional pairwise and angular interactions between out of plane Mo and S atoms contribute 5.84 eV to the bending modulus of SLMoS2.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > College of Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE