Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Impact of Nitrate Dose on Toluene Degradation under Denitrifying Condition

Authors
Kim, Dong-JuPark, Mee-RyeLim, Dae-SoonChoi, Jae-Woo
Issue Date
5월-2013
Publisher
HUMANA PRESS INC
Keywords
Toluene; Degradation; Nitrate dose; Optimum ratio; Pseudomonas putida
Citation
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, v.170, no.2, pp.248 - 256
Indexed
SCIE
SCOPUS
Journal Title
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume
170
Number
2
Start Page
248
End Page
256
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/103412
DOI
10.1007/s12010-013-0176-4
ISSN
0273-2289
Abstract
In this study, we investigated the impact of nitrate dose on toluene degradation by Pseudomonas putida to elucidate the upper limit of nitrate concentration and whether an optimum ratio of nitrate to toluene concentration exists. Batch microcosm studies were conducted in order to monitor toluene degradation for various ratios (2-20) of nitrate to toluene with nitrate concentrations ranging from 0 to 700 mg L-1 for a given toluene concentration of 50 and 25 mg L-1 during 4-day (short term) and 14-day (long term) incubation time, respectively. The short-term study revealed that nitrate concentration of 500 mg L-1 was toxic to bacteria and the optimum concentration was 300 mg L-1 yielding the highest toluene degradation rate (0.083 mg L-1 h(-1)). In the batch study of long term, toluene degradation was limited to 6 days after which the nitrate at 50 mg L-1 was depleted, indicating that nitrate was a necessary electron acceptor. For both batch studies, an optimum ratio of 6 was found yielding the highest toluene degradation rate. This indicates that an appropriate nitrate dose is essential for efficient degradation of toluene when bioremediation of groundwater contaminated with toluene is under consideration.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Earth and Environmental Sciences > 1. Journal Articles
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE