Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells

Authors
Jung, M-JRho, J-KKim, Y-MJung, J. E.Jin, Y. B.Ko, Y-GLee, J-SLee, S-JLee, J. C.Park, M-J
Issue Date
10-Jan-2013
Publisher
NATURE PUBLISHING GROUP
Keywords
non-small cell lung cancer; cancer stern cell; CXCR4; PI3K/PTEN/Akt/mTOR signaling; STAT3 signaling; tumorigenicity
Citation
ONCOGENE, v.32, no.2, pp.209 - 221
Indexed
SCIE
SCOPUS
Journal Title
ONCOGENE
Volume
32
Number
2
Start Page
209
End Page
221
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/104215
DOI
10.1038/onc.2012.37
ISSN
0950-9232
Abstract
The hypothesis of cancer stem cells has been proposed to explain the therapeutic failure in a variety of cancers including lung cancers. Previously, we demonstrated acquisition of epithelial-mesenchymal transition, a feature highly reminiscent of cancer stem-like cells, in gefitinib-resistant A549 cells (A549/GR). Here, we show that A549/GR cells contain a high proportion of CXCR4+ cells that are responsible for having high potential of self-renewal activity in vitro and tumorigenicity in vivo. A549/GR cells exhibited strong sphere-forming activity and high CXCR4 expression and SDF-1 alpha secretion compared with parent cells. Pharmacological inhibition (AMD3100) and/or siRNA transfection targeting CXCR4 significantly suppressed sphere-forming activity in A549 and A549/GR cells, and in various non-small cell lung cancer (NSCLC) cell lines. A549/GR cells showed enhanced Akt, mTOR and STAT3 (Y705) phosphorylation. Pharmacological inhibition of phosphatidyl inositol 3-kinase or transfection with wild-type PTEN suppressed phosphorylation of Akt, mTOR and STAT3 (Y705), sphere formation, and CXCR4 expression in A549/GR cells, whereas mutant PTEN enhanced these events. Inhibition of STAT3 by WP1066 or siSTAT3 significantly suppressed the sphere formation, but not CXCR4 expression, indicating that STAT3 is a downstream effector of CXCR4-mediated signaling. FACS-sorted CXCR4+ A549/GR cells formed many large spheres, had self-renewal capacity, demonstrated radiation resistance in vitro and exhibited stronger tumorigenic potential in vivo than CXCR4 cells. Lentiviral-transduction of CXCR4 enhanced sphere formation and tumorigenicity in H460 and A549 cells, whereas introduction of siCXCR4 suppressed these activities in A549/GR cells. Our data indicate that CXCR4 NSCLC cells are strong candidates for tumorigenic stem-like cancer cells that maintain sternness through a CXCR4-medated STAT3 pathway and provide a potential therapeutic target for eliminating these malignant cells in NSCLC. Oncogene (2013) 32, 209-221; doi:10.1038/onc.2012.37; published online 27 February 2012
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Life Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ko, Young Gyu photo

Ko, Young Gyu
Department of Life Sciences
Read more

Altmetrics

Total Views & Downloads

BROWSE