Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method
- Authors
- Woo, Jun-Myung; Kim, Seok Hyang; Chun, Honnggu; Kim, Sung Jae; Ahn, Jinhong; Park, Young June
- Issue Date
- 2013
- Publisher
- ROYAL SOC CHEMISTRY
- Citation
- LAB ON A CHIP, v.13, no.18, pp.3755 - 3763
- Indexed
- SCIE
SCOPUS
- Journal Title
- LAB ON A CHIP
- Volume
- 13
- Number
- 18
- Start Page
- 3755
- End Page
- 3763
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/106449
- DOI
- 10.1039/c3lc50524c
- ISSN
- 1473-0197
- Abstract
- In this paper, we investigate the effect of electrical pulse bias on DNA hybridization events in a biosensor platform, using a Carbon Nanotube Network (CNN) and Gold Nano Particles (GNP) as an electrical channel. The scheme provides both hybridization rate enhancement of bio molecules, and electrical measurement in a transient state to avoid the charge screening effect, thereby significantly improving the sensitivity. As an example, the probe DNA molecules oscillate with pulse trains, resulting in the enhancement of DNA hybridization efficiency, and accordingly of the sensor performances in Tris-EDTA (TE) buffer solution, by as much as over three times, compared to the non-biasing conditions. More importantly, a wide dynamic range of 10(6) (target-DNA concentration from 5 pM to 5 mu M) is achieved in human serum. In addition, the pulse biasing method enables one to obtain the conductance change, before the ions within the Electrical Double Layer (EDL) are redistributed, to avoid the charge screening effect, leading to an additional sensitivity enhancement.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Bioengineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.