Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Polar surface effects on the thermal conductivity of ZnO nanowires: a shell-like surface reconstruction-induced preserving mechanism

Authors
Jiang, Jin-WuPark, Harold S.Rabczuk, Timon
Issue Date
2013
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.5, no.22, pp.11035 - 11043
Indexed
SCIE
SCOPUS
Journal Title
NANOSCALE
Volume
5
Number
22
Start Page
11035
End Page
11043
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/106528
DOI
10.1039/c3nr03567k
ISSN
2040-3364
Abstract
We perform molecular dynamics (MD) simulations to investigate the effect of polar surfaces on the thermal transport in zinc oxide (ZnO) nanowires. We find that the thermal conductivity of nanowires with free polar (0001) surfaces is much higher than that of nanowires that have been stabilized with reduced charges on the polar (0001) surfaces, and also hexagonal nanowires without any transverse polar surface, where the reduced charge model has been proposed as a promising stabilization mechanism for the (0001) polar surfaces of ZnO nanowires. From normal mode analysis, we show that the higher thermal conductivity is due to the shell-like reconstruction that occurs for the free polar surfaces. This shell-like reconstruction suppresses twisting motion in the nanowires such that the bending phonon modes are not scattered by the other phonon modes, and this leads to substantially higher thermal conductivity of the ZnO nanowires with free polar surfaces. Furthermore, the auto-correlation function of the normal mode coordinate is utilized to extract the phonon lifetime, which leads to a concise explanation for the higher thermal conductivity of ZnO nanowires with free polar surfaces. Our work demonstrates that ZnO nanowires without polar surfaces, which exhibit low thermal conductivity, are more promising candidates for thermoelectric applications than nanowires with polar surfaces (and also high thermal conductivity).
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > College of Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE