Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

MOLECULAR DYNAMICS/XFEM COUPLING BY A THREE-DIMENSIONAL EXTENDED BRIDGING DOMAIN WITH APPLICATIONS TO DYNAMIC BRITTLE FRACTURE

Authors
Talebi, H.Silani, M.Bordas, S. P. A.Kerfriden, P.Rabczuk, T.
Issue Date
2013
Publisher
BEGELL HOUSE INC
Keywords
multiscale; atomistic simulation; extended finite elements; crack
Citation
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, v.11, no.6, pp.527 - 541
Indexed
SCIE
SCOPUS
Journal Title
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING
Volume
11
Number
6
Start Page
527
End Page
541
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/106565
DOI
10.1615/IntJMultCompEng.2013005838
ISSN
1543-1649
Abstract
We propose a method to couple a three-dimensional continuum domain to a molecular dynamics domain to simulate propagating cracks in dynamics. The continuum domain is treated by an extended finite element method to handle the discontinuities. The coupling is based on the bridging domain method, which blends the continuum and atomistic energies. The Lennard-Jones potential is used to model the interactions in the atomistic domain, and the Cauchy-Born rule is used to compute the material behavior in the continuum domain. To our knowledge, it is the first time that a three dimensional extended bridging domain method is reported. To show the suitability of the proposed method, a three-dimensional crack problem with an atomistic region around the crack front is solved. The results show that the method is capable of handling crack propagation and dislocation nucleation.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > College of Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE