Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes
- Authors
- Shokuhfar, Tolou; Sinha-Ray, Suman; Sukotjo, Cortino; Yarin, Alexander L.
- Issue Date
- 2013
- Publisher
- ROYAL SOC CHEMISTRY
- Citation
- RSC ADVANCES, v.3, no.38, pp.17380 - 17386
- Indexed
- SCIE
SCOPUS
- Journal Title
- RSC ADVANCES
- Volume
- 3
- Number
- 38
- Start Page
- 17380
- End Page
- 17386
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/106577
- DOI
- 10.1039/c3ra42173b
- ISSN
- 2046-2069
- Abstract
- Medical implants such as orthopedic, dental, and vascular stents may require subsequent drug therapy regiments to prevent infection or decrease inflammation. Drug release derived directly from the implant surface rather than systemically can reduce unnecessary side effects. TiO2 nanotubes could be considered a more suitable alternative route for the development of drug-eluting implants. This is mainly due to the fact that the fabrication of these nanostructures does not require an additional coating process and they will not delaminate from the surface. On the contrary, TiO2 nanotubes have shown an increased osseointegration compared to conventional titanium surfaces. This study aims to provide a novel technology for encapsulating anti-inflammatory drug (sodium naproxen) inside biocompatible TiO2 nanotubes by means of self-sustained diffusion. These nanotubes can be used as stand-alone drug carriers or as surface modification of orthopedic and/or dental implants. The self-sustained diffusion process occurs at room temperature and ambient pressure, which is not harmful for drug chemistry and structure of TiO2 nanotubes. The demonstrated availability of biocompatible TiO2 drug carriers also shows that this method can be extended to many other drug systems, thus eliminating completely the chances for cytotoxicity of the 'state of the art' methods of drug delivery.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > College of Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.