Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Graft copolymer templated synthesis of mesoporous MgO/TiO2 mixed oxide nanoparticles and their CO2 adsorption capacities

Authors
Jeon, HarimMin, Yoon JaeAhn, Sung HoonHong, Seok-MinShin, Jong-ShikKim, Jong HakLee, Ki Bong
Issue Date
20-11월-2012
Publisher
ELSEVIER SCIENCE BV
Keywords
CO2 adsorption; Porous material; Sol-gel process; Graft copolymer; Magnesium oxide; Titanium oxide
Citation
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, v.414, pp.75 - 81
Indexed
SCIE
SCOPUS
Journal Title
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
Volume
414
Start Page
75
End Page
81
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/106927
DOI
10.1016/j.colsurfa.2012.08.009
ISSN
0927-7757
Abstract
Mesoporous mixed oxide nanoparticles consisting of MgO and TiO2 were synthesized via a sot-gel process by templating poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer. The mesoporous structures and morphologies of the MgO/TiO2 mixed oxides were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. Interestingly, MgO/TiO2 mixed oxide exhibited much higher CO2 adsorption capacity (0.477 mol CO2/kg sorbent for 40:60 MgO/TiO2) than pure MgO (0.074) or TiO2 (0.063). This result arises from the increase in surface area and pore volume of the mixed oxide due to the formation of bimodal pores. (C) 2012 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ki Bong photo

Lee, Ki Bong
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE