Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors

Authors
Moon, Hi GyuShim, Young-SoekKim, Do HongJeong, Hu YoungJeong, MyounghoJung, Joo YoungHan, Seung MinKim, Jong KyuKim, Jin-SangPark, Hyung-HoLee, Jong-HeunTuller, Harry L.Yoon, Seok-JinJang, Ho Won
Issue Date
17-8월-2012
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.2
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
2
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/107691
DOI
10.1038/srep00588
ISSN
2045-2322
Abstract
One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with similar to 90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE