Spatial Filtering for Robust Myoelectric Control
- Authors
- Hahne, Janne Mathias; Graimann, Bernhard; Mueller, Klaus-Robert
- Issue Date
- 5월-2012
- Publisher
- IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
- Keywords
- Common spatial pattern (csp); hand prostheses; myoelectric control; prosthetic control; prosthetics; spatial filters
- Citation
- IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, v.59, no.5, pp.1436 - 1443
- Indexed
- SCIE
SCOPUS
- Journal Title
- IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
- Volume
- 59
- Number
- 5
- Start Page
- 1436
- End Page
- 1443
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/108555
- DOI
- 10.1109/TBME.2012.2188799
- ISSN
- 0018-9294
- Abstract
- Pattern recognition techniques have been applied to extract information from electromyographic (EMG) signals that can be used to control electrical powered hand prostheses. In this paper, optimized spatial filters that enhance separation properties of EMG signals are investigated. In particular, different multiclass extensions of the common spatial patterns algorithm are applied to high-density surface EMG signals acquired from the forearms of ten healthy subjects. Visualization of the obtained filter coefficients provides insight into the physiology of the muscles related to the performed contractions. The CSP methods are compared with a commonly used pattern recognition approach in a six-class classification task. Cross-validation results show a significant improvement in performance and a higher robustness against noise than commonly used pattern recognition methods.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - Graduate School > Department of Brain and Cognitive Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.