Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Leukotriene B-4 Receptor-2 Promotes Invasiveness and Metastasis of Ovarian Cancer Cells through Signal Transducer and Activator of Transcription 3 (STAT3)-dependent Up-regulation of Matrix Metalloproteinase 2

Authors
Seo, Ji-MinPark, SooyoungKim, Jae-Hong
Issue Date
20-4월-2012
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Citation
JOURNAL OF BIOLOGICAL CHEMISTRY, v.287, no.17, pp.13840 - 13849
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF BIOLOGICAL CHEMISTRY
Volume
287
Number
17
Start Page
13840
End Page
13849
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/108714
DOI
10.1074/jbc.M111.317131
ISSN
0021-9258
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in women. Despite the fact that the metastatic spread is associated with the majority of deaths from ovarian cancer, the molecular mechanisms regulating the invasive and metastatic phenotypes of ovarian cancer are poorly understood. In this study, we demonstrated that BLT2, a low affinity leukotriene B-4 receptor, is highly expressed in OVCAR-3 and SKOV-3 human ovarian cancer cells, and that this receptor plays a key role in the invasiveness and metastasis of these cells through activation of STAT3 and consequent up-regulation of matrix metalloproteinase 2 (MMP2). In addition, our results suggest that activation of NAD(P) H oxidase-4 (NOX4) and subsequent reactive oxygen species (ROS) generation lie downstream of BLT2, mediating the stimulation of STAT3-MMP2 cascade in this process. For example, knockdown of BLT2 or NOX4 using each specific siRNA suppressed STAT3 stimulation and MMP2 expression. Similarly, inhibition of STAT3 suppressed the expression of MMP2, thus leading to attenuated invasiveness of these ovarian cancer cells. Finally, the metastasis ofSKOV-3 cells in nude mice was markedly suppressed by pharmacological inhibition of BLT2. Together, our results implicate a BLT2-NOX4-ROS-STAT3-MMP2 cascade in the invasiveness and metastasis of ovarian cancer cells.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Life Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jae Hong photo

Kim, Jae Hong
생명과학대학 (생명과학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE