Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development of Magnetic Bearing System for a New Third-Generation Blood Pump

Authors
Lee, Jung JooAhn, Chi BumChoi, JaesoonPark, Jun WooSong, Seung-JoonSun, Kyung
Issue Date
11월-2011
Publisher
WILEY-BLACKWELL
Keywords
Axial-flow pump; Magnetic bearing; Ventricular assist device
Citation
ARTIFICIAL ORGANS, v.35, no.11, pp.1082 - 1094
Indexed
SCIE
SCOPUS
Journal Title
ARTIFICIAL ORGANS
Volume
35
Number
11
Start Page
1082
End Page
1094
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/111177
DOI
10.1111/j.1525-1594.2011.01376.x
ISSN
0160-564X
Abstract
A magnetic bearing system is a crucial component in a third-generation blood pump, particularly when we consider aspects such as system durability and blood compatibility. Many factors such as efficiency, occupying volume, hemodynamic stability in the flow path, mechanical stability, and stiffness need to be considered for the use of a magnetic bearing system in a third-generation blood pump, and a number of studies have been conducted to develop novel magnetic bearing design for better handling of these factors. In this study, we developed and evaluated a new magnetic bearing system having a motor for a new third-generation blood pump. This magnetic bearing system consists of a magnetic levitation compartment and a brushless direct current (BLDC) motor compartment. The active-control degree of freedom is one; this control is used for controlling the levitation in the axial direction. The levitation in the radial direction has a passive magnetic levitation structure. In order to improve the system efficiency, we separated the magnetic circuit for axial levitation by using a magnetic circuit for motor drive. Each magnetic circuit in the bearing system was designed to have a minimum gap by placing mechanical parts, such as the impeller blades, outside the circuit. A custom-designed noncontact gap sensor was used for minimizing the system volume. We fabricated an experimental prototype of the proposed magnetic bearing system and evaluated its performance by a control system using the Matlab xPC Target system. The noncontact gap sensor was an eddy current gap sensor with an outer diameter of 2.38 mm, thickness of 0.88 mm, and resolution of 5 mu m. The BLDC motor compartment was designed to have an outer diameter of 20 mm, length of 28.75 mm, and power of 4.5 W. It exhibited a torque of 8.6 mNm at 5000 rpm. The entire bearing system, including the motor and the sensor, had an outer diameter of 22 mm and a length of 97 mm. The prototype exhibited sufficient levitation performance in the stop state and the rotation state with a gap of 0.2 mm between the rotor and the stator. The system had a steady position error of 0.01 mu m in the stop state and a position error of 0.02 mu m at a rotational speed of 5000 rpm; the current consumption rates were 0.15 A and 0.17 A in the stop state and the rotation state, respectively. In summary, we developed and evaluated a unique magnetic bearing system with an integrated motor. We believe that our design will be an important basis for the further development of the design of an entire third-generation blood pump system.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE