Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Creating Opal-Templated Continuous Conducting Polymer Films with Ultralow Percolation Thresholds Using Thermally Stable Nanoparticles

Authors
Kang, Dong JinKwon, TaegyunKim, Minsoo P.Cho, Chul-HeeJung, HyunjungBang, JoonaKim, Bumjoon J.
Issue Date
Nov-2011
Publisher
AMER CHEMICAL SOC
Keywords
polymer-coated nanoparticles; conducting polymer; conducting film; compatibilizer; self-assembled colloids
Citation
ACS NANO, v.5, no.11, pp.9017 - 9027
Indexed
SCIE
SCOPUS
Journal Title
ACS NANO
Volume
5
Number
11
Start Page
9017
End Page
9027
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/111197
DOI
10.1021/nn203209c
ISSN
1936-0851
Abstract
We propose a novel and robust strategy for creating continuous conducting polymer films with ultralow percolation thresholds using polymer-coated gold nanoparticles (Au NPs) as surfactant. Continuous poly(triphenylamine) (PTPA) films of high internal phase polymeric emulsions were fabricated using an assembly of cross-linked polystyrene (PS) colloidal particles as template. Polymer-coated Au NPs were designed to be thermally stable even above 200 degrees C and neutral to both the PS and PTPA phases. Therefore, the Au NPs localize at the PS/PTPA interface and function as surfactant to efficiently produce a continuous conducting PTPA polymer film with very low percolation thresholds. The volume fraction threshold for percolation of the PTPA phase with insulating PS colloids (as measured by electron microscopy and conductivity measurements) was found to be 0.20. In contrast, with the addition of an extremely low volume fraction (phi(p) = 0.35 vol %) of surfactant Au NPs, the volume fraction threshold for percolation of the PTPA phase was dramatically reduced to 0.05. The SEM and TEM measurements dearly demonstrated the formation of a continuous PTPA phase within the polyhedral phase of PS colloids. To elucidate the influence of the nanoparticle surfactant on the blend films, the morphology and conductivity of the blends at different PS colloid/PTPA volume ratios were carefully characterized as a function of the Au NP concentration. Our approach provides a methodology for a variety of applications that require a continuous phase for the transport of molecular species, ions, or electrons at low concentrations and a second phase for mechanical support or the conduction of a separate species.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE