Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Comparison of fracture strain based ductile failure simulation with experimental results

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Nak-Hyun-
dc.contributor.authorOh, Chang-Sik-
dc.contributor.authorKim, Yun-Jae-
dc.contributor.authorYoon, Kee-Bong-
dc.contributor.authorMa, Young-Hwa-
dc.date.accessioned2021-09-07T07:39:38Z-
dc.date.available2021-09-07T07:39:38Z-
dc.date.created2021-06-19-
dc.date.issued2011-10-
dc.identifier.issn0308-0161-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/111410-
dc.description.abstractThis paper provides experimental validation of the approach for simulating ductile failure using finite element methods, recently proposed by the authors. The proposed method is based on a phenomenological stress-modified fracture strain model. Incremental damage is defined by the ratio of the plastic strain increment to the fracture strain, and total damage is calculated using linear summation. When the accumulated damage becomes unity, all stress components at the finite element gauss point are reduced to a small value to simulate progressive failure. The proposed method is validated against four experimental data sets of cracked specimens made of three different materials. Despite the simplicity of the proposed method, the simulated results agree well with experimental data for all cases considered, providing sufficient confidence in the use of the proposed method to simulate ductile failure. (C) 2011 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.subjectCOHESIVE ZONE PARAMETERS-
dc.subjectCRACK-GROWTH-
dc.subjectVOID NUCLEATION-
dc.subjectRESISTANCE-
dc.subjectSTRESS-
dc.subjectRUPTURE-
dc.subjectDAMAGE-
dc.subjectMODEL-
dc.titleComparison of fracture strain based ductile failure simulation with experimental results-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Yun-Jae-
dc.identifier.doi10.1016/j.ijpvp.2011.07.006-
dc.identifier.scopusid2-s2.0-80052541997-
dc.identifier.wosid000296954100008-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, v.88, no.10, pp.434 - 447-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING-
dc.citation.titleINTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING-
dc.citation.volume88-
dc.citation.number10-
dc.citation.startPage434-
dc.citation.endPage447-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.subject.keywordPlusCOHESIVE ZONE PARAMETERS-
dc.subject.keywordPlusCRACK-GROWTH-
dc.subject.keywordPlusVOID NUCLEATION-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusSTRESS-
dc.subject.keywordPlusRUPTURE-
dc.subject.keywordPlusDAMAGE-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorDuctile fracture simulation-
dc.subject.keywordAuthorExperimental validation-
dc.subject.keywordAuthorFinite element analysis-
dc.subject.keywordAuthorStress-modified fracture strain-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Yun Jae photo

Kim, Yun Jae
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE