Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Surface Plasmonic Nanodisk/Nanopan Lasers

Authors
Kwon, Soon-HongKang, Ju-HyungKim, Sun-KyungPark, Hong-Gyu
Issue Date
Oct-2011
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Cavity resonators; nanofabrication; nanophotonics; plasmons; semiconductor lasers
Citation
IEEE JOURNAL OF QUANTUM ELECTRONICS, v.47, no.10, pp.1346 - 1353
Indexed
SCIE
SCOPUS
Journal Title
IEEE JOURNAL OF QUANTUM ELECTRONICS
Volume
47
Number
10
Start Page
1346
End Page
1353
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/111474
DOI
10.1109/JQE.2011.2166537
ISSN
0018-9197
Abstract
We report the demonstration of subwavelength plasmonic lasers from a semiconductor nanodisk with a silver nanopan cavity. Full 3-D surface-plasmon-polariton (SPP) lasing was achieved because the nanodisk/nanopan structure enables excitation of high-quality SPP modes with subwavelength mode volumes. The optical properties of all possible resonant modes including SPP and optical modes excited in the nanodisk/nanopan were calculated and analyzed systematically using the finite-difference time-domain method. To fabricate the nanodisk/nanopan structure with an ultra-smooth silver surface, conformal deposition of silver was performed on the nanodisk. Rich SPP lasing actions were demonstrated through optical pumping of the fabricated structures. The observed SPP lasing modes were indentified unambiguously from measurements of the spectrum, mode image, and polarization state. These measurements compared well with the simulation results. In particular, the significant temperature-dependent threshold of the SPP lasers, which distinguishes SPP modes from conventional optical modes, was measured. This subwavelength SPP laser is a significant step toward the further miniaturization of a coherent light source in ultra-compact photonic integrated circuits.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE