Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimization Approach for 4-D Natural Landscape Evolution

Authors
Paik, Kyungrock
Issue Date
10월-2011
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Extremal hypotheses; genetic algorithms; landscape evolution; optimal channel network; optimization methods
Citation
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, v.15, no.5, pp.684 - 691
Indexed
SCIE
SCOPUS
Journal Title
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
Volume
15
Number
5
Start Page
684
End Page
691
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/111483
DOI
10.1109/TEVC.2010.2087027
ISSN
1089-778X
Abstract
This paper presents a unique optimization method developed for landscape evolution problems. An existing hypothesis of the optimal channel network states that fluvial landscape evolution can be characterized as the procedure that follows minimum total energy expenditure. Previous studies have tested this hypothesis by solving an optimization problem, i.e., finding landscapes that satisfy the minimum total energy expenditure criterion, and showed that such optimized landscapes are similar to natural landscapes in many respects. These studies have approximated a 3-D landscape as a 2-D river network. While this network-based approach has greatly simplified the formulation of the optimization problem, this approximation limits the investigation of features such as longitudinal profiles, since their representation requires the gravitational direction-wise dimension. Here, an alternative technique is devised to fully handle the optimization of 3-D landforms over time. The proposed idea is to break down the time domain and to apply an optimization algorithm sequentially for discrete time steps. For the optimization part, a heuristic algorithm motivated from adaptation strategies of natural systems (here landscape formation) is used. This method is applied to a theoretical landscape with the condition that the balance between tectonic uplift and sediment lost is satisfied. It is found that landscapes of minimum total energy expenditure exhibit the Hack's law and the power-law in the exceedance probability distribution of drainage area, which are the characteristics found in natural river networks. However, they demonstrate no systematic pattern in longitudinal profiles.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Paik, Kyung rock photo

Paik, Kyung rock
공과대학 (건축사회환경공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE