Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells

Authors
Seo, Kang DeukSong, Hae MinLee, Myung JunPastore, MariachiaraAnselmi, ChiaraDe Angelis, FilippoNazeeruddin, Mohammad K.Graeetzel, MichaelKim, Hwan Kyu
Issue Date
Sep-2011
Publisher
ELSEVIER SCI LTD
Keywords
Coumarin; Dye-sensitised solar cell; Low-band-gap chromophore; Ethylenedioxythiophene; Molecular orbitals
Citation
DYES AND PIGMENTS, v.90, no.3, pp.304 - 310
Indexed
SCIE
SCOPUS
Journal Title
DYES AND PIGMENTS
Volume
90
Number
3
Start Page
304
End Page
310
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/111639
DOI
10.1016/j.dyepig.2011.01.009
ISSN
0143-7208
Abstract
A series of coumarin dyes containing a low-band-gap chromophore of ethylenedioxythiophene (EDOT), which comprises a coumarin moiety as the electron donor and a cyanoacrylic acid moiety as electron acceptor in D-pi-A chromophores, were developed for use in dye-sensitised solar cells (DSSCs). These coumarin dyes have been used to fabricate DSSCs using I-/I-3(-) liquid electrolytes and their device performances were compared with that of NKX-2677 as a standard dye. Even though HKK-CM2 and HKK-CM3 have more extended aromatic units than HKK-CM1, the degree of pi-conjugation in HKK-CM2 and HKK-CM3 is less efficient than that of HKK-CM1, due to the relatively larger torsion angle between the plane of the donor and that of the acceptor. It is also in a good agreement with Density Functional Theory (DFT) calculations. As a result, a solar cell based on HKK-CM1 sensitiser shows better photovoltaic performance with J(SC) 0114.2 mA cm(-2), V-OC of 0.60 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency eta of 6.07% under the standard AM 1.5 irradiation, than HKK-CM2 and HKK-CM3-based solar cells. (C) 2011 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Material Chemistry > 1. Journal Articles
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE