Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimization of physical parameters of solid oxide fuel cell electrode using electrochemical model

Authors
Jo, Dong HyunChun, Jeong HwanPark, Ki TaeHwang, Ji WonLee, Jeong YongJung, Hyun WookKim, Sung Hyun
Issue Date
9월-2011
Publisher
SPRINGER
Keywords
SOFC; Simulation; Ohmic; Activation; Concentration; Overpotential; Graded Electrode; Performance of Fuel Cell
Citation
KOREAN JOURNAL OF CHEMICAL ENGINEERING, v.28, no.9, pp.1844 - 1850
Indexed
SCIE
SCOPUS
KCI
Journal Title
KOREAN JOURNAL OF CHEMICAL ENGINEERING
Volume
28
Number
9
Start Page
1844
End Page
1850
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/111682
DOI
10.1007/s11814-011-0026-4
ISSN
0256-1115
Abstract
To enhance the performance of anode-supported solid oxide fuel cell (SOFC), an electrochemical model has been developed in this study. The Butler-Volmer equation, Ohm's law and dusty-gas model are incorporated to predict the activation, ohmic and concentration ovemotentials, respectively. The optimal cell microstructure and operating parameters for the best current-voltage (J-V) characteristics have been sought from the information of the exchange current density and gas diffusion coefficients. As the cell temperature rises, the activation and ohmic overpotentials decrease, whereas the concentration overpotential increases due to the considerable reduction of gas density at the elevated temperature despite the increased diffusion coefficient. Also, increasing the hydrogen molar fraction and operating pressure can further augment the maximum cell output. Since there exists an optimum electrode pore size and porosity for maximum cell power density, the graded electrode has newly been designed to effectively reduce both the activation and concentration overpotentials. The results exhibit 70% improved cell performance than the case with a non-graded electrode. This electrochemical model will be useful to simply understand overpotential features and devise the strategy for optimal cell design in SOFC systems.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher JUNG, Hyun Wook photo

JUNG, Hyun Wook
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE