Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The affinity ratio-Its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor

Authors
Kim, Yeon SeokKim, Joong HyunKim, In AeLee, Su JinGu, Man Bock
Issue Date
15-6월-2011
Publisher
ELSEVIER ADVANCED TECHNOLOGY
Keywords
Aptamers; Competitive interactions; Biosensor; Gold nanoparticles; Nanomaterials
Citation
BIOSENSORS & BIOELECTRONICS, v.26, no.10, pp.4058 - 4063
Indexed
SCIE
SCOPUS
Journal Title
BIOSENSORS & BIOELECTRONICS
Volume
26
Number
10
Start Page
4058
End Page
4063
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/112223
DOI
10.1016/j.bios.2011.03.030
ISSN
0956-5663
Abstract
We present an important role of the ratio of affinities in unmodified gold nanoparticles-based colorimetric aptasensor reactions. An affinity ratio, representing the competitive interactions among aptamers, targets, and unmodified gold nanoparticles (umAuNPs), was found to be an important factor for the sensitivity (the performance), where the affinity ratio is the affinity of the aptamer to targets divided by the affinity to umAuNPs (K(dAuNP)/K(dTarget)). In this study, the five different aptamers having different affinity ratios to both umAuNPs and targets are used, and the degree of color change is well correlated with its affinity ratio. This result is verified by using a tetracycline binding aptamer (TBA) showing different affinities to its three derivatives, tetracycline, oxytetracycline and doxycycline. Based on this model, the sensitivity of umAuNPs based calorimetric detection for ibuprofen can be enhanced simply through reducing the ibuprofen binding aptamer's affinity to umAuNP by using bis (p-sulfonatophenyl) phenylphosphine as an AuNP-capping ligand, instead of using the citrate. As a result, a clear color change is observed even at a 20-fold less amount of ibuprofen. This study presents that the performance (detection sensitivity) of umAuNPs-based calorimetric aptasensors could be improved by simply adjusting the affinity ratio of the aptamers to targets and umAuNPs, without knowing the conformational changes of aptamers upon the target binding or needing any modification of aptamer sequences. (C) 2011 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Gu, Man Bock photo

Gu, Man Bock
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE