Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Investigation of spatial and energetic trap distributions in 1 nm EOT SiO2/HfO2 by discharging-sweep mode amplitude charge pumping

Full metadata record
DC Field Value Language
dc.contributor.authorChung, Eun-Ae-
dc.contributor.authorNam, Kab-Jin-
dc.contributor.authorKim, Young-Pil-
dc.contributor.authorMin, Ji-Young-
dc.contributor.authorCho, Moonju-
dc.contributor.authorHong, Hyungseok-
dc.contributor.authorHan, Jeong-
dc.contributor.authorLee, Jae-Duk-
dc.contributor.authorShin, Yu-Gyun-
dc.contributor.authorChoi, Siyoung-
dc.contributor.authorKim, Sangsig-
dc.date.accessioned2021-09-07T12:16:04Z-
dc.date.available2021-09-07T12:16:04Z-
dc.date.created2021-06-14-
dc.date.issued2011-06-
dc.identifier.issn1293-2558-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/112416-
dc.description.abstractIn this study, the spatial and energetic distributions of electrons trapped within a SiO2/HfO2 dual layer gate stack (EOT = 1 nm) of fully processed high-k/metal gate nFETs were investigated by discharging-sweep mode amplitude charge pumping (DSACP). DSACP enables the separate energy profiling of the traps in the SiO2 and HfO2 layers of a SiO2/HfO2 gate stack. The electrical measurement of the spatial/energetic trap profiles with DSACP is based on the electron de-trapping mechanism, which allows scanning to be performed below the conduction band of Si in terms of both the depth and energy. The results show that shallower traps appear in the HfO2 layer with increasing discharging time and a significant correlation exists between the density of the shallow traps and positive bias temperature instability (PBTI) characteristics. (C) 2011 Elsevier Masson SAS. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER-
dc.subjectTHRESHOLD VOLTAGE INSTABILITIES-
dc.subjectGATE-
dc.subjectDIELECTRICS-
dc.titleInvestigation of spatial and energetic trap distributions in 1 nm EOT SiO2/HfO2 by discharging-sweep mode amplitude charge pumping-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Sangsig-
dc.identifier.doi10.1016/j.solidstatesciences.2011.03.010-
dc.identifier.scopusid2-s2.0-79957573905-
dc.identifier.wosid000292174000023-
dc.identifier.bibliographicCitationSOLID STATE SCIENCES, v.13, no.6, pp.1360 - 1363-
dc.relation.isPartOfSOLID STATE SCIENCES-
dc.citation.titleSOLID STATE SCIENCES-
dc.citation.volume13-
dc.citation.number6-
dc.citation.startPage1360-
dc.citation.endPage1363-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Inorganic & Nuclear-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusTHRESHOLD VOLTAGE INSTABILITIES-
dc.subject.keywordPlusGATE-
dc.subject.keywordPlusDIELECTRICS-
dc.subject.keywordAuthorCharge de-trapping-
dc.subject.keywordAuthorHigh-k gate stack-
dc.subject.keywordAuthorTrap profile-
dc.subject.keywordAuthorCharge pumping-
dc.subject.keywordAuthorMOSFET-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Sang sig photo

Kim, Sang sig
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE