Physiological and Metabolic Responses for Hexadecane Degradation in Acinetobacter oleivorans DR1
- Authors
- Jung, Jaejoon; Noh, Jaemin; Park, Woojun
- Issue Date
- 4월-2011
- Publisher
- MICROBIOLOGICAL SOCIETY KOREA
- Keywords
- Acinetobacter; biofilm; hydrocarbon degradation; motility; proteomic analysis
- Citation
- JOURNAL OF MICROBIOLOGY, v.49, no.2, pp.208 - 215
- Indexed
- SCIE
SCOPUS
KCI
- Journal Title
- JOURNAL OF MICROBIOLOGY
- Volume
- 49
- Number
- 2
- Start Page
- 208
- End Page
- 215
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/112795
- DOI
- 10.1007/s12275-011-0395-8
- ISSN
- 1225-8873
- Abstract
- The hexadecane degradation of Acinetobacter oleivorans DR1 was evaluated with changes in temperature and ionic salt contents. Hexadecane degradation of strain DR1 was reduced markedly by the presence of sodium chloride (but not potassium chloride). High temperature (37 degrees C) was also shown to inhibit the motility, biofilm formation, and hexadecane biodegradation. The biofilm formation of strain DR1 on the oil-water interface might prove to be a critical physiological feature for the degradation of hexadecane. The positive relationship between biofilm formation and hexadecane degradation could be observed at 30 degrees C, but not at low temperatures (25 degrees C). Alterations in cell hydrophobicity and EPS production by temperature and salts were not correlated with biofilm formation and hexadecane degradation. Our proteomic analyses have demonstrated that metabolic changes through the glyoxylate pathway are important for efficient degradation of hexadecane. Proteins involved in fatty acid metabolism, gluconeogenesis, and oxidative stress defense proteins appear to be highly expressed during biodegradation of hexadecane. These results suggested that biofilm formation and oxidative stress defense are important physiological responses for hexadecane degradation along with metabolic switch to glyoxylate pathway in strain DR1.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.