Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fabrication of nano-scale phase change materials using nanoimprint lithography and reactive ion etching process

Authors
Yang, Ki-YeonKim, Jong-WooHong, Sung-HoonHwang, Jae-YeonLee, Heon
Issue Date
2-8월-2010
Publisher
ELSEVIER SCIENCE SA
Keywords
PRAM; Phase change material; Ge2Sb2Te5; Nano imprint lithography
Citation
THIN SOLID FILMS, v.518, no.20, pp.5662 - 5665
Indexed
SCIE
SCOPUS
Journal Title
THIN SOLID FILMS
Volume
518
Number
20
Start Page
5662
End Page
5665
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/115900
DOI
10.1016/j.tsf.2009.10.030
ISSN
0040-6090
Abstract
Phase change random access memory (PRAM) is one of the most promising non-volatile memories due to its ability to store digital data in the form of crystalline and amorphous phases of phase change materials. As a phase change material, Ge2Sb2Te5 (GST225) is usually used, due to its reversible phase transition capability with speeds of less than 100 ns between the crystalline and amorphous phases. In order to fabricate highly integrated PRAM devices, sub micron- to nanometer-sized patterning of GST225 layer must be accomplished. In this study, 70 nm-sized polymer patterns were fabricated using partial filling nanoimprint lithography (NIL) on a GST225 layer, which was deposited by RF sputtering. Then GST225 was etched using Ar/Cl-2 plasma with an ICP etcher. Etch conditions, including Cl-2 concentration, were optimized to obtain the vertical etch profile of the GST patterns. (C) 2009 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Heon photo

Lee, Heon
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE