Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A hybrid prediction method for low-subsonic turbulent flow noise

Authors
Moon, Y. J.Seo, J. H.Bae, Y. M.Roger, M.Becker, S.
Issue Date
8월-2010
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Turbulent noise; Low subsonic flow; LES/LPCE hybrid method
Citation
COMPUTERS & FLUIDS, v.39, no.7, pp.1125 - 1135
Indexed
SCIE
SCOPUS
Journal Title
COMPUTERS & FLUIDS
Volume
39
Number
7
Start Page
1125
End Page
1135
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/115929
DOI
10.1016/j.compfluid.2010.02.005
ISSN
0045-7930
Abstract
A hybrid method is proposed for prediction of low-subsonic, turbulent flow noise. In this method, the noise sources in the near wall turbulences or in the wake are computed by the incompressible large eddy simulation (LES), while the generation and propagation of the acoustic waves are solved by the linearized perturbed compressible equations (LPCE), with acoustic sources represented by a material derivative of the hydrodynamic pressure, DP/Dt. The accuracy of the present method is critically assessed for two experiments conducted at the Ecole Centrale de Lyon and the University Erlangen, where aeroacoustic measurements were taken for (i) the flat plate self-noise at zero angle of attack (Re(c) = 1 3 x 10(5), M = 0 06) and (ii) the forward-facing step noise (Re(h) = 8000, M = 0 03), respectively. The noise sources are identified and analyzed further to determine their spectral-dependent, spanwise coherence functions, gamma(y) of the wall pressure fluctuations, in order to quantify the sizes of the noise sources The far-field sound pressure level (SPL) spectra predicted by the present method are found in excellent agreement with the experimental measurements (C) 2010 Elsevier Ltd. All rights reserved
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE