Effect of Aluminum Content on the Microstructure and Mechanical Properties of Hypereutectoid Steels
- Authors
- Jang, Yoon Soo; Phaniraj, M. P.; Kim, Dong-Ik; Shim, Jae-Hyeok; Huh, Moo-Young
- Issue Date
- 8월-2010
- Publisher
- SPRINGER
- Citation
- METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, v.41A, no.8, pp.2078 - 2084
- Indexed
- SCIE
SCOPUS
- Journal Title
- METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE
- Volume
- 41A
- Number
- 8
- Start Page
- 2078
- End Page
- 2084
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/115945
- DOI
- 10.1007/s11661-010-0233-3
- ISSN
- 1073-5623
- Abstract
- Hypereutectoid steels with 0, 0.69, 1.29, and 1.95 wt pct aluminum were prepared. The samples were hot rolled at 1100 A degrees C followed by cooling in air. The microstructure of the as-rolled samples was characterized using field emission-scanning electron microscopy (FE-SEM). The electron backscattered diffraction (EBSD) technique was used to identify the grain boundary phases. The steels have a pearlitic microstructure with different amounts of grain boundary cementite. A continuous grain boundary cementite network is present in the 0 wt pct Al steel. Grain boundary cementite formation is completely suppressed in the 1.29 wt pct Al steel. Phase diagram calculations show that aluminum increases the eutectoid temperature. However, the interlamellar spacing and pearlite colony size decrease with increase in aluminum content. Dilatometry measurements show that aluminum addition increases the undercooling below the eutectoid temperature. The yield strength increases with the decrease in interlamellar spacing and colony size. Very high ultimate tensile strengths (1200 to 1400 MPa) and improved elongations to failure (7 to 9 pct) are achieved in the as-rolled condition.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.