Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Shift in Optimal Joint Angle of the Ankle Dorsiflexors Following Eccentric Exercise

Authors
Lee, H. -D.Kim, S. -J.Lee, D. -Y.Kurihara, T.Lee, Y. -S.Kawakami, Y.
Issue Date
Jun-2010
Publisher
SPRINGER
Keywords
Human; Muscle contraction; Tibialis anterior; Force-length relationship; Eccentric contraction; Muscle damage
Citation
EXPERIMENTAL MECHANICS, v.50, no.5, pp 661 - 666
Pages
6
Indexed
SCI
SCIE
SCOPUS
Journal Title
EXPERIMENTAL MECHANICS
Volume
50
Number
5
Start Page
661
End Page
666
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/116343
DOI
10.1007/s11340-009-9245-6
ISSN
0014-4851
1741-2765
Abstract
Exposure to unaccustomed eccentric exercise causes muscle damage. Popping sarcomere theory [1] has been proposed and assumed that eccentric contraction-induced muscle damage predominantly occurs at muscle length on the descending limb of the force-length relationship. This study investigated changes in the mechanical properties following maximum effort eccentric exercise at systematically different muscle lengths for the human ankle dorsiflexors. The results of this study showed that the eccentric exercise of the ankle dorsiflexors decreased the peak torque, shifted the optimal joint angle towards longer muscle length without changes in the level of muscle activation. However, no difference in the shift of the optimal ankle joint angle was observed between the groups that performed eccentric exercise at long muscle length (ECC_L) and at short muscle length (ECC_S). In conclusion, the muscle length at which the eccentric exercise was performed did not produce differential effects on the neuro-mechanical properties of in-vivo human ankle dorsiflexors, and thus the popping sarcomere theory might not be the sole mechanism to account for the eccentric contraction-induced optimal muscle length change.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Department of Sport and Leisure Studies > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE