Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rigiflex Lithography-Based Nanodot Arrays for Localized Surface Plasmon Resonance Biosensors

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Dong Kyu-
dc.contributor.authorKim, Hye In-
dc.contributor.authorKim, Jun Pyo-
dc.contributor.authorPark, Je Seob-
dc.contributor.authorLee, Su Yeon-
dc.contributor.authorYang, Seung-Man-
dc.contributor.authorLee, Jeewon-
dc.contributor.authorChung, Chan-Hwa-
dc.contributor.authorSim, Sang Jun-
dc.contributor.authorYoo, Pil J.-
dc.date.accessioned2021-09-08T03:08:56Z-
dc.date.available2021-09-08T03:08:56Z-
dc.date.created2021-06-11-
dc.date.issued2010-05-04-
dc.identifier.issn0743-7463-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/116455-
dc.description.abstractWe present a facile and robust means of fabricating metallic nanodot arrays for localized surface plasmon resonance (LSPR) biosensors through the strategic coupling of a polymeric template prepared with rigiflex lithography and a subsequent metallization via electrodeposition. Rigiflex lithography provides the capability to realize large-scale nanosized features as well as process flexibility during contact molding. In addition, the electrodeposition process enables wet-based nanoscale metallization with high pattern fidelity and geometric controllability. Generated metallic nanodot arrays can be used as a general platform for LSPR biosensors via the sequential binding of chemicals and biomolecules. Extinction spectra of the corresponding LSPR signal are measured with UV-vis-NIR spectroscopy, from which the pattern size and shape dependence of LSPR are readily confirmed. The feasibility of a very sensitive biosensor is demonstrated by the targeted binding of human immunoglobulin G, yielding subnanomolar detection capability with high selectivity.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectGOLD NANOPARTICLES-
dc.subjectSILVER NANOPARTICLES-
dc.subjectNANOSPHERE LITHOGRAPHY-
dc.subjectSIGNAL ENHANCEMENT-
dc.subjectOPTICAL-PROPERTIES-
dc.subjectCAPILLARY FORCE-
dc.subjectCLUSTER ARRAYS-
dc.subjectSPECTROSCOPY-
dc.subjectSENSITIVITY-
dc.subjectSENSOR-
dc.titleRigiflex Lithography-Based Nanodot Arrays for Localized Surface Plasmon Resonance Biosensors-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Jeewon-
dc.identifier.doi10.1021/la100598v-
dc.identifier.scopusid2-s2.0-77951687145-
dc.identifier.wosid000276969700010-
dc.identifier.bibliographicCitationLANGMUIR, v.26, no.9, pp.6119 - 6126-
dc.relation.isPartOfLANGMUIR-
dc.citation.titleLANGMUIR-
dc.citation.volume26-
dc.citation.number9-
dc.citation.startPage6119-
dc.citation.endPage6126-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusGOLD NANOPARTICLES-
dc.subject.keywordPlusSILVER NANOPARTICLES-
dc.subject.keywordPlusNANOSPHERE LITHOGRAPHY-
dc.subject.keywordPlusSIGNAL ENHANCEMENT-
dc.subject.keywordPlusOPTICAL-PROPERTIES-
dc.subject.keywordPlusCAPILLARY FORCE-
dc.subject.keywordPlusCLUSTER ARRAYS-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusSENSITIVITY-
dc.subject.keywordPlusSENSOR-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jee won photo

Lee, Jee won
College of Engineering (Department of Chemical and Biological Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE