Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Breast Cancer Diagnosis Using a Microfluidic Multiplexed Immunohistochemistry Platform

Authors
Kim, Minseok S.Kim, TaeminKong, Sun-YoungKwon, SoimBae, Chae YunChoi, JaekyuKim, Chul HwanLee, Eun SookPark, Je-Kyun
Issue Date
3-5월-2010
Publisher
PUBLIC LIBRARY SCIENCE
Citation
PLOS ONE, v.5, no.5
Indexed
SCIE
SCOPUS
Journal Title
PLOS ONE
Volume
5
Number
5
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/116458
DOI
10.1371/journal.pone.0010441
ISSN
1932-6203
Abstract
Background: Biomarkers play a key role in risk assessment, assessing treatment response, and detecting recurrence and the investigation of multiple biomarkers may also prove useful in accurate prediction and prognosis of cancers. Immunohistochemistry (IHC) has been a major diagnostic tool to identify therapeutic biomarkers and to subclassify breast cancer patients. However, there is no suitable IHC platform for multiplex assay toward personalized cancer therapy. Here, we report a microfluidics-based multiplexed IHC (MMIHC) platform that significantly improves IHC performance in reduction of time and tissue consumption, quantification, consistency, sensitivity, specificity and cost-effectiveness. Methodology/Principal Findings: By creating a simple and robust interface between the device and human breast tissue samples, we not only applied conventional thin-section tissues into on-chip without any additional modification process, but also attained perfect fluid control for various solutions, without any leakage, bubble formation, or cross-contamination. Four biomarkers, estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR) and Ki-67, were examined simultaneously on breast cancer cells and human breast cancer tissues. The MMIHC method improved immunoreaction, reducing time and reagent consumption. Moreover, it showed the availability of semi-quantitative analysis by comparing Western blot. Concordance study proved strong consensus between conventional whole-section analysis and MMIHC (n = 105, lowest Kendall's coefficient of concordance, 0.90). To demonstrate the suitability of MMIHC for scarce samples, it was also applied successfully to tissues from needle biopsies. Conclusions/Significance: The microfluidic system, for the first time, was successfully applied to human clinical tissue samples and histopathological diagnosis was realized for breast cancers. Our results showing substantial agreement indicate that several cancer-related proteins can be simultaneously investigated on a single tumor section, giving clear advantages and technical advances over standard immunohistochemical method. This novel concept will enable histopathological diagnosis using numerous specific biomarkers at a time even for small-sized specimens, thus facilitating the individualization of cancer therapy.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medical Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE