Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Molecular characterization of FinR, a novel redox-sensing transcriptional regulator in Pseudomonas putida KT2440

Authors
Yeom, SujinYeom, JinkiPark, Woojun
Issue Date
May-2010
Publisher
MICROBIOLOGY SOC
Citation
MICROBIOLOGY-SGM, v.156, pp.1487 - 1496
Indexed
SCIE
SCOPUS
Journal Title
MICROBIOLOGY-SGM
Volume
156
Start Page
1487
End Page
1496
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/116554
DOI
10.1099/mic.0.034181-0
ISSN
1350-0872
Abstract
FinR is required for the induction of fpr (ferredoxin-NADP(+) reductase) under superoxide stress conditions in Pseudomonas putida. Many proteobacteria harbour FinR homologues in their genome as a putative LysR-type protein. Three cysteine residues (at positions 150, 239 and 289 in P. putida FinR) are conserved in all FinR homologues. When these conserved cysteines, along with two other cysteine residues present in FinR, were individually mutated to serines, the FinR remained active, unlike SoxR and OxyR in Escherichia coli. The results of our in vitro DNA-binding assay with cellular extracts showed that FinR binds directly to the fpr promoter region. In order to identify the FinR functional domain for sensing superoxide stress, we employed random and site-directed mutagenesis of FinR. Among 18 single amino acid mutants, three mutants (T39A, R194A and E225A) abolished fpr induction without any alteration of their DNA-binding ability, whereas other mutants also abrogated their DNA-binding abilities. Interestingly, two mutants (L215P and D51A) appeared to be constitutively active, regardless of superoxide stress conditions. Ferrous iron depletion, ferric iron addition and fdxA (ferredoxin) gene deletion also participate in the regulation of fpr. These data indicate that FinR has unusual residues for redox sensing and that the redox-sensing mechanism of FinR differs from the well-known mechanisms of OxyR and SoxR.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Woo jun photo

Park, Woo jun
College of Life Sciences and Biotechnology (Division of Environmental Science and Ecological Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE