Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Numerical simulations of collective magnetic properties and magnetoresistance in 2D ferromagnetic nanoparticle arrays

Authors
Tan, R. P.Lee, J. S.Cho, J. U.Noh, S. J.Kim, D. K.Kim, Y. K.
Issue Date
28-4월-2010
Publisher
IOP PUBLISHING LTD
Citation
JOURNAL OF PHYSICS D-APPLIED PHYSICS, v.43, no.16
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume
43
Number
16
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/116605
DOI
10.1088/0022-3727/43/16/165002
ISSN
0022-3727
Abstract
Magnetic properties and magnetoresistance (MR) in 2D magnetic nanoparticle (NP) arrays are investigated by solving the Landau-Lifshitz-Gilbert equation at T = 0K. The interparticle interactions induce a decrease in the coercive field and in the MR amplitude compared with the non-interacting case, while in some cases, the variation of the remanent magnetization is found to be non-monotonic when increasing the dipolar strength. For different values of the anisotropy, these variations of the coercive field, the remanent magnetization and the MR ratio are reproduced and exhibit a scaling on the dipolar/anisotropy ratio. These results suggest that the magnetic properties of the assemblies can be described by an individual or collective behaviour depending on the balance between the magnetic anisotropy and the dipolar interactions. In the case of strongly interacting NPs, the corresponding configurations of the magnetic moments at the remanent state reveal the formation of a ferromagnetic order at moderate dipolar strength (increase in the remanent magnetization) while small ferromagnetic domains/chains coupled antiferromagnetically are obtained in the case of strongly interacting NPs (decrease in the remanent magnetization). Such domains lead to a reduction in the MR amplitude and to a deviation from the m(2)-law in the resistance-magnetic field [R(H)] characteristic of the non-interacting case.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young Keun photo

Kim, Young Keun
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE