Impossible differential cryptanalysis using matrix method
- Authors
- Kim, Jongsung; Hong, Seokhie; Lim, Jongin
- Issue Date
- 6-3월-2010
- Publisher
- ELSEVIER SCIENCE BV
- Keywords
- Cryptanalysis; Block ciphers; Impossible differential cryptanalysis; Matrix method; Feistel; Rijndael; Skipjack
- Citation
- DISCRETE MATHEMATICS, v.310, no.5, pp.988 - 1002
- Indexed
- SCIE
SCOPUS
- Journal Title
- DISCRETE MATHEMATICS
- Volume
- 310
- Number
- 5
- Start Page
- 988
- End Page
- 1002
- URI
- https://scholar.korea.ac.kr/handle/2021.sw.korea/116819
- DOI
- 10.1016/j.disc.2009.10.019
- ISSN
- 0012-365X
- Abstract
- The general strategy of impossible differential cryptanalysis is to first find impossible differentials and then exploit them for retrieving subkey material from the outer rounds of block ciphers. Thus, impossible differentials are one of the crucial factors to see how much the underlying block ciphers are resistant to impossible differential cryptanalysis. In this article, we introduce a widely applicable matrix method to find impossible differentials of block cipher structures whose round functions are bijective. Using this method, we find various impossible differentials of known block cipher structures: Nyberg's generalized Feistel network, a generalized CAST256-like structure, a generalized MARS-like structure, a generalized RC6-like structure, Rijndael structures and generalized Skipjack-like structures. We expect that the matrix method developed in this article will be useful for evaluating the security of block ciphers against impossible differential cryptanalysis, especially when one tries to design a block cipher with a secure structure. (C) 2009 Elsevier B.V. All rights reserved.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - School of Cyber Security > Department of Information Security > 1. Journal Articles
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.