Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development of surface-textured hydrogenated ZnO:Al thin-films for mu c-Si solar cells

Authors
Tark, Sung JuKang, Min GuPark, SungeunJang, Ji HoonLee, Jeong ChulKim, Won MokLee, Joon SungKim, Donghwan
Issue Date
11월-2009
Publisher
ELSEVIER SCIENCE BV
Keywords
RF magnetron sputter; Surface texture; Hydrogenated ZnO:Al; mu c-Si:H solar cells
Citation
CURRENT APPLIED PHYSICS, v.9, no.6, pp.1318 - 1322
Indexed
SCIE
SCOPUS
KCI
Journal Title
CURRENT APPLIED PHYSICS
Volume
9
Number
6
Start Page
1318
End Page
1322
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/119017
DOI
10.1016/j.cap.2008.12.015
ISSN
1567-1739
Abstract
This study addresses the optimization of rf magnetron-sputtered hydrogenated ZnO:Al (HAZO) films as front contacts in microcrystalline silicon solar cells. The front contact of a solar cell has to be highly conductive and highly transparent to visible and infrared radiation. Furthermore, it has to scatter the incident light efficiently in order for the light to be effectively trapped in the underlying silicon layers. In this research, HAZO films were rf-magnetron-sputtered on glass substrates from a ceramic (98 wt% ZnO, 2 wt% Al2O3) target. Various compositions of AZO films on glass substrates were prepared by changing the H-2/(Ar + H-2) ratio of the sputtering gas. The resulting smooth films exhibited high transparencies (T >= 85% for visible light including all reflection losses) and excellent electrical properties (p = 2.7 x 10(-4) Omega . cm). Depending on their structural properties, these films developed different surface textures upon post-deposition etching using diluted hydrochloric acid. The light-scattering properties of these films could be controlled simply by varying the etching time. Moreover, the electrical properties of the films were not affected by the etching process. Therefore, within certain limits, it is possible to optimize the electro-optical and light-scattering Properties separately. The microcrystalline silicon (pc-Si:H)based p-i-n solar cells prepared using these new texture-etched AZO:H substrates showed high quantum efficiencies in the long wavelength range, thereby demonstrating effective light trapping. Using the optimum AZO:H thin-film textured surface, we achieved a p-i-n pc-Si solar cell efficiency of 7.78%. (c) 2009 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Dong hwan photo

KIM, Dong hwan
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE